Computational Complexity

2012 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Growth Phenomena in Cellular Automata

  • Janko Gravner
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-1800-9_96

Article Outline

Glossary

Definition of the Subject

Introduction

Final Set

Asymptotic Shapes

Nucleation

Future Directions

Bibliography

Keywords

Cellular Automaton Finite Automaton Asymptotic Density Threshold Growth Moore Neighborhood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

Primary Literature

  1. 1.
    Adamatzky A, Martínez GJ, Mora JCST (2006) Phenomenology of reaction‐diffusion binary‐state cellular automata. Int J Bifurc Chaos Appl Sci Eng 16:2985–3005Google Scholar
  2. 2.
    Adler J (1991) Bootstrap percolation. Physica A 171:453–4170CrossRefGoogle Scholar
  3. 3.
    Adler J, Staufer D, Aharony A (1989) Comparison of bootstrap percolation models. J Phys A: Math Gen 22:L279–L301CrossRefGoogle Scholar
  4. 4.
    Aizenman M, Lebowitz J (1988) Metastability effects in bootstrap percolation. J Phys A: Math Gen 21:3801–3813MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Allouche J-P, Shallit J (2003) Automatic sequences: theory, applications, generalizations. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  6. 6.
    Andjel E, Mountford TS, Schonmann RH (1995) Equivalence of decay rates for bootstrap percolation like cellular automata. Ann Inst H Poincaré 31:13–25MathSciNetMATHGoogle Scholar
  7. 7.
    Berlekamp ER, Conway JH, Guy RK (2004) Winning ways for your mathematical plays, vol 4, 2nd edn. Peters, NatickGoogle Scholar
  8. 8.
    Bohman T (1999) Discrete threshold growth dynamics are omnivorous for box neighborhoods. Trans Am Math Soc 351:947–983MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Bohman T, Gravner J (1999) Random threshold growth dynamics. Random Struct Algorithms 15:93–111MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Bramson M, Neuhauser C (1994) Survival of one‐dimensional cellular automata under random perturbations. Ann Probab 22:244–263MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Brummitt CD, Delventhal H, Retzlaff M (2008) Packard snowflakes on the von Neumann neighborhood. J Cell Autom 3:57–80MathSciNetGoogle Scholar
  12. 12.
    Bäck T, Dörnemann H, Hammel U, Frankhauser P (1996) Modeling urban growth by cellular automata. In: Lecture Notes in Computer Science. Proceedings of the 4th International Conference on Parallel Problem Solving from Nature, vol. 1141. Springer, Berlin, pp 636–645Google Scholar
  13. 13.
    Cerf R, Cirillo ENM (1999) Finite size scaling in three‐dimensional bootstrap percolation. Ann Probab 27:1837–1850MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Cerf R, Manzo F (2002) The threshold regime of finite volume bootstrap percolation.Stoch Process Appl 101:69–82MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Chopard B, Droz M (1998) Cellular automata modeling of physical systems. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  16. 16.
    Cobham A (1972) Uniform tag sequences. Math Syst Theory 6:164–192MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Cook M (2005) Universality in elementary cellular automata. Complex Syst 15:1–40Google Scholar
  18. 18.
    Deutsch A, Dormann S (2005) Cellular automata modeling of biological pattern formation. Birkhäuser, BostonGoogle Scholar
  19. 19.
    Durrett R, Steif JE (1991) Some rigorous results for the Greenberg–Hastings model.J Theor Probab 4:669–690MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Durrett R, Steif JE (1993) Fixation results for threshold voter systems. Ann Probab 21:232–247MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Eppstein D (2002) Searching for spaceships.In: More Games of no Chance (Berkeley, CA, 2000). Cambridge University Press, Cambridge, pp 351–360Google Scholar
  22. 22.
    Evans KM (2001) Larger than Life: digital creatures in a family of two‐dimensional cellular automata.In: Cori R, Mazoyer J, Morvan M, Mosseri R (eds) Discrete Mathematics and Theoretical Computer Science, vol AA. pp 177–192Google Scholar
  23. 23.
    Evans KM (2003) Replicators and larger than life examples.In: Griffeath D, Moore C (eds) New constructions in cellular automata. Oxford University Press, New York, pp 119–159Google Scholar
  24. 24.
    Fisch R, Gravner J, Griffeath D (1991) Threshold‐range scaling for the excitable cellular automata.Stat Comput 1:23–39CrossRefGoogle Scholar
  25. 25.
    Fisch R, Gravner J, Griffeath D (1993) Metastability in the Greenberg–Hastings model.Ann Appl Probab 3:935–967MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Gardner M (1976) Mathematical games. Sci Am 133:124–128CrossRefGoogle Scholar
  27. 27.
    Goles E, Martinez S (1990) Neural and Automata Networks. Kluwer, DordrechtMATHCrossRefGoogle Scholar
  28. 28.
    Gotts NM (2003) Self‐organized construction in sparse random arrays of Conway's game of life. In: Griffeath D and Moore C (eds) New Constructions in Cellular Automata. Oxford University Press, New York, pp 1–53Google Scholar
  29. 29.
    Gravner J, Griffeath D (1993) Threshold growth dynamics.Trans Am Math Soc 340:837–870MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Gravner J, Griffeath D (1996) First passage times for the threshold growth dynamics on \( { \mathbb{Z}^2 } \).Ann Probab 24:1752–1778MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Gravner J, Griffeath D (1997) Multitype threshold voter model and convergence to Poisson-Voronoi tessellation. Ann Appl Probab 7:615–647MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Gravner J, Griffeath D (1997) Nucleation parameters in discrete threshold growth dynamics. Exp Math 6:207–220MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Gravner J, Griffeath D (1998) Cellular automaton growth on \( { \mathbb{Z}^2 } \): theorems, examples and problems.Adv Appl Math 21:241–304MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Gravner J, Griffeath D (1999) Reverse shapes in first–passage percolation and related growth models.In: Bramson M, Durrett R (eds) Perplexing Problems in Probability. Festschrift in Honor of Harry Kesten, Birkhäuser, Bostons, pp 121–142Google Scholar
  35. 35.
    Gravner J, Griffeath D (1999) Scaling laws for a class of critical cellular automaton growth rules.In: Révész P, Tóth B (eds) Random Walks. János Bolyai Mathematical Society, Budapest, pp 167–186Google Scholar
  36. 36.
    Gravner J, Griffeath D (2006) Modeling snow crystal growth. I. Rigorous results for Packard's digit snowflakes. Exp Math 15:421–444MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Gravner J, Griffeath D (2006) Random growth models with polygonal shapes. Ann Probab 34:181–218MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Gravner J, Holroyd AE (2008) Slow convergence in bootstrap percolation.Ann Appl Probab 18:909–928MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Gravner J, Mastronarde N Shapes in deterministic and random growth models (in preparation)Google Scholar
  40. 40.
    Gravner J, McDonald E (1997) Bootstrap percolation in a polluted environment. J Stat Phys 87:915–927MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Gravner J, Tracy C, Widom H (2002) A growth model in a random environment. Ann Probab 30:1340–1368MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Greenberg J, Hastings S (1978) Spatial patterns for discrete models of diffusion in excitable media.SIAM J Appl Math 4:515–523MathSciNetCrossRefGoogle Scholar
  43. 43.
    Griffeath D (1994) Self-organization of random cellular automata: four snapshots. In: Grimmett G (ed) Probability and Phase Transition. Kluwer, Dordrecht, pp 49–67Google Scholar
  44. 44.
    Griffeath D, Hickerson D (2003) A two‐dimensional cellular automaton with irrational density. In: Griffeath D, Moore C (eds) New constructions in cellular automata. Oxford University Press, Oxford, pp 119–159Google Scholar
  45. 45.
    Griffeath D, Moore C (1996) Life without death is P-complete. Complex Syst 10:437–447MathSciNetMATHGoogle Scholar
  46. 46.
    Holroyd AE (2003) Sharp metastability threshold for two‐dimensional bootstrap percolation. Probab Theory Related Fields 125:195–224MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Holroyd AE (2006) The metastability threshold for modified bootstrap percolation in d dimensions. Electron J Probab 11:418–433MathSciNetCrossRefGoogle Scholar
  48. 48.
    Holroyd AE, Liggett TM, Romik D (2004) Integrals, partitions, and cellular automata.Trans Am Math Soc 356:3349–3368MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Jen E (1991) Exact solvability and quasiperiodicity of one‐dimensional cellular automata. Nonlinearity 4:251–276MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Kier LB, Seybold PG, Cheng C-K (2005) Cellular Automata Modeling of Chemical Systems. Springer, DordrechtGoogle Scholar
  51. 51.
    Lindgren K, Nordahl MG (1994) Evolutionary dynamics of spatial games. Physica D 75:292–309MATHCrossRefGoogle Scholar
  52. 52.
    Meakin P (1998) Fractals, scaling and growth far from equilibrium. Cambridge University Press, CambridgeMATHGoogle Scholar
  53. 53.
    Packard NH (1984) Lattice models for solidification and aggregation. Institute for Advanced Study preprint. Reprinted in: Wolfram S (ed) (1986) Theory and application of cellular automata. World Scientific, Singapore, pp 305–310Google Scholar
  54. 54.
    Packard NH, Wolfram S (1985) Two-dimensional cellular automata. J Stat Phys 38:901–946MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    Pimpinelli A, Villain J (1999) Physics of Crystal Growth. Cambridge University Press, CambridgeGoogle Scholar
  56. 56.
    Schonmann RH (1992) On the behavior of some cellular automata related to bootstrap percolation. Ann Probab 20:174–193MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    Schonmann RH (1990) Finite size scaling behavior of a biased majority rule cellular automaton. Physica A 167:619–627MathSciNetCrossRefGoogle Scholar
  58. 58.
    Song M (2005) Geometric evolutions driven by threshold dynamics. Interfaces Free Bound 7:303–318MathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    Toffoli T, Margolus N (1997) Cellular Automata Machines. MIT Press, CambridgeGoogle Scholar
  60. 60.
    Vichniac GY (1984) Simulating physics with cellular automata. Physica D 10:96–116MathSciNetCrossRefGoogle Scholar
  61. 61.
    Vichniac GY (1986) Cellular automata models of disorder and organization.In: Bienenstock E, Fogelman-Soulie F, Weisbuch G (eds) Disordered Systems and Biological Organization. Springer, Berlin, pp 1–20Google Scholar
  62. 62.
    Wiener N, Rosenblueth A (1946) The math foundation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch Inst Cardiol Mex 16:205–265MathSciNetGoogle Scholar
  63. 63.
    Willson SJ (1978) On convergence of configurations. Discret Math 23:279–300MathSciNetMATHGoogle Scholar
  64. 64.
    Willson SJ (1984) Cellular automata can generate fractals. Discret Appl Math 8:91–99MathSciNetMATHCrossRefGoogle Scholar
  65. 65.
    Willson SJ (1987) Computing fractal dimensions for additive cellular automata. Physica D 24:190–206MathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    Wójtowicz M (2001) Mirek's Cellebration: a 1D and 2D Cellular Automata Explorer, Version 4.20. http://www.mirwoj.opus.chelm.pl/ca/
  67. 67.
    van Enter ACD (1987) Proof of Straley's argument for bootstrap percolation. J Stat Phys 48:943–945MATHCrossRefGoogle Scholar
  68. 68.
    van Enter ACD, Hulshof T (2007) Finite-size effects for anisotropic bootstrap percolation: logarithmic corrections. J Stat Phys 128:1383–1389MathSciNetMATHCrossRefGoogle Scholar

Books and Reviews

  1. 69.
    Adamatzky A (1995) Identification of cellular automata. Taylor & Francis, LondonGoogle Scholar
  2. 70.
    Allouche J-P, Courbage M, Kung J, Skordev G (2001) Cellular automata. In: Encyclopedia of physical science and technology, vol 2, 3rd edn. Academic Press, San Diego, pp 555–567Google Scholar
  3. 71.
    Allouche J-P, Courbage M, Skordev G (2001) Notes on cellular automata. Cubo, Matemática Educational 3:213–244MathSciNetMATHGoogle Scholar
  4. 72.
    Durrett R (1988) Lecture Notes on particle Systems and Percolation. Wadsworth & Brooks/Cole, Pacific Grove MATHGoogle Scholar
  5. 73.
    Durrett R (1999) Stochastic spatial models. SIAM Rev 41:677–718MathSciNetMATHCrossRefGoogle Scholar
  6. 74.
    Gravner J (2003) Growth phenomena in cellular automata.In: Griffeath D, Moore C (eds) New Constructions in Cellular Automata. Oxford University Press, New York, pp 161–181Google Scholar
  7. 75.
    Holroyd AE (2007) Astonishing cellular automata. Bull Centre Rech Math 10:10–13Google Scholar
  8. 76.
    Ilachinsky A (2001) Cellular Automata: A Discrete Universe. World Scientific, Singapore Google Scholar
  9. 77.
    Liggett TM (1985) Interacting Particle Systems. Springer, New YorkMATHCrossRefGoogle Scholar
  10. 78.
    Liggett TM (1999) Stochastic Interacting Systems: contact, voter and exclusion processes. Springer, New YorkMATHCrossRefGoogle Scholar
  11. 79.
    Rothman DH, Zaleski S (1997) Lattice-Gas Cellular Automata. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  12. 80.
    Toom A (1995) Cellular automata with errors: problems for students of probability. In: Snell JL (ed) Topics in contemporary probability and its applications. CRC Press, Boca Raton, pp 117–157Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Janko Gravner
    • 1
  1. 1.Mathematics DepartmentUniversity of CaliforniaDavisUSA