Computational Complexity

2012 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Aggregation Operators and Soft Computing

  • Vicenç Torra
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-1800-9_9

Article Outline

Glossary

Definition of the Subject

Introduction

Applications

Aggregation, Integration and Fusion

Aggregation Operators and Their Construction

Some Aggregation Operators

Future Directions

Bibliography

This is a preview of subscription content, log in to check access.

Bibliography

Primary Literature

  1. 1.
    Aczél J (1966) Lectures on functional equations and their applications. Academic, New York, LondonGoogle Scholar
  2. 2.
    Aczél J (1987) A short course on functional equations. Reidel, DordrechtGoogle Scholar
  3. 3.
    Arnold BC, Balakrishnan N, Nagaraja HN (1992) A first course in order statistics. Wiley, New YorkzbMATHGoogle Scholar
  4. 4.
    Arrow KJ (1951) Social choice and individual values, 2nd edn.Wiley, New YorkzbMATHGoogle Scholar
  5. 5.
    Arrow KJ, Sen AK, Suzumura K (eds) (2002) Handbook of social choice and welfare. Elsevier, AmsterdamGoogle Scholar
  6. 6.
    Bajraktarević M (1958) Sur une équation fonctionnelle aux valeurs moyennes.Glasnik Mat Fiz I Astr 13(4):243–248Google Scholar
  7. 7.
    Barthelemy JP, McMorris FR (1986) The median procedure for n-trees.J Classif 3:329–334zbMATHCrossRefGoogle Scholar
  8. 8.
    Bouyssou D, Marchant T, Pirlot M, Perny P, Tsoukiàs A, Vincke P (2000) Evaluation and decision models: A critical perspective.Kluwer's International Series. Kluwer, DordrechtGoogle Scholar
  9. 9.
    Bullen PS (2003) Handbook of means and their inequalities.Kluwer, DordrechtzbMATHCrossRefGoogle Scholar
  10. 10.
    Bullen PS, Mitrinović DS, Vasić PM (1988) Means and their Inequalities. Reidel, DordrechtGoogle Scholar
  11. 11.
    Choquet G (1953) Theory of capacities.Ann Inst Fourier 5:131–295MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fishburn PC, Rubinstein A (1986) Aggregation of equivalence relations.J Classif 3:61–65MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Fodor J, Roubens M (1994) Fuzzy preference modelling and multicriteria decision support.Kluwer, DordrechtzbMATHCrossRefGoogle Scholar
  14. 14.
    Grabisch M, Murofushi T, Sugeno M (2000) Fuzzy measures and integrals: Theory and applications. Physica, HeidelbergzbMATHGoogle Scholar
  15. 15.
    Hardy GH, Littlewood JE, Pólya G (1934) Inequalities, 2nd edn.Cambridge University Press, CambridgeGoogle Scholar
  16. 16.
    Hirsch JE (2005) An index to quantify an individual's scientific research output.Proc Natl Acad Sci 102(45):16569–16572CrossRefGoogle Scholar
  17. 17.
    Narukawa Y, Torra V (2004) Twofold integral and Multi-step Choquet integral. Kybernetika 40(1):39–50MathSciNetzbMATHGoogle Scholar
  18. 18.
    Mitchell HB (2007) Multi-sensor data fusion. An introduction.Springer, HeidelbergGoogle Scholar
  19. 19.
    Pappus (1982) La collection mathématique. Librairie Scientifique et Technique Albert Blanchard, ParisGoogle Scholar
  20. 20.
    Roy B (1996) Multicriteria methodology for decision aiding.Kluwer, DordrechtzbMATHCrossRefGoogle Scholar
  21. 21.
    Ruspini EH, Bonissone PP, Pedrycz W (1998) Handbook of fuzzy computation. IOP, LondonzbMATHCrossRefGoogle Scholar
  22. 22.
    Sugeno M (1974) Theory of fuzzy integrals and its applications.Ph D dissertation, Tokyo Institute of Technology, JapanGoogle Scholar
  23. 23.
    Torra V (1997) The weighted OWA operator.Int J Intell Syst 12:153–166zbMATHCrossRefGoogle Scholar
  24. 24.
    Torra V (2003) La integral doble o twofold integral: Una generalització de les integrals de Choquet i Sugeno.Butlletí de l'Associació Catalana d'Intel·ligència Artificial 29:13–19.Preliminary version in English: Twofold integral: A generalization of Choquet and Sugeno integral. IIIA Technical Report TR-2003-08Google Scholar
  25. 25.
    Torra V, Narukawa Y (2007) Modeling decisions: Information fusion and aggregation operators. Springer, HeidelbergGoogle Scholar
  26. 26.
    Torra V, Narukawa Y (2008) The h-index and the number of citations: Two fuzzy integrals. IEEE Trans Fuzzy Syst 16(3):795–797MathSciNetCrossRefGoogle Scholar

Books and Reviews

  1. 27.
    [26] gives a general description of the field of aggregation operators, it defines the main operators and discusses a few practical topics about their applications (e. g. parameter determination).(Calvo et al, 2002) is an edited book that contains state-of-the-art chapter on different topics related with aggregation and fusion. A few properties on the aggregation operators (mainly related with inequalities) can be found in the books by Bullen [9] and Bullen, Mitrinović and Vasić [10], and the excellent book by Hardy, Littlewood and Pólya [34].[14] is an edited volume on fuzzy measures and fuzzy integrals.Google Scholar
  2. 28.
    [18] is an introduction to multisensor data fusion, a topic very much related with aggregation operatorsGoogle Scholar
  3. 29.
    Alsina C, Frank MJ, Schweizer B (2006) Associative functions: Triangular norms and copulas. World Scientific, SingaporezbMATHCrossRefGoogle Scholar
  4. 30.
    Calvo T, Mayor G, Mesiar R (2002) Aggregation operators. Physica, HeidelbergzbMATHCrossRefGoogle Scholar
  5. 31.
    Pap E (2002) Handbook of measure theory, vols I, II.North-Holland, AmsterdamGoogle Scholar
  6. 32.
    Yager RR (1988) On ordered weighted averaging aggregation operators in multi-criteria decision making.IEEE Trans Syst Man Cybern 18:183–190MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Vicenç Torra
    • 1
  1. 1.Institut d'Investigació en Intelligència Artificial – CSICBellaterraSpain