Computational Complexity

2012 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Fuzzy System ModelsEvolution from FuzzyRulebases to Fuzzy Functions

  • I. Burhan Türkşen
Reference work entry

Article Outline


Definition of the Subject


Type 1 Fuzzy System Models of the Past

Future of Fuzzy System Models

Case Study Applications

Experimental Design

Conclusions and Future Directions



Support Vector Machine Membership Function Fuzzy System Support Vector Regression Support Vector Machine Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


Primary Literature

  1. 1.
    Babuska R, Verbruggen HB (1997) Constructing fuzzy models by product space clustering. In: Hellendoorn H, Driankov D (eds) Fuzzy model identification: selected approaches. Springer, Berlin, pp 53–90CrossRefGoogle Scholar
  2. 2.
    Bezdek JC (1973) Fuzzy mathematics in pattern classification. Ph.D Thesis, Applied Mathematics Center. Cornell University, IthacaGoogle Scholar
  3. 3.
    Celikyilmaz A, Türkşen IB (2007) Fuzzy functions with support vector machines. Inf Sci 177:5163–5177Google Scholar
  4. 4.
    Celmins A (1987) Least squares model fitting to fuzzy vector data. Fuzzy Sets Syst 22:245–269MathSciNetCrossRefGoogle Scholar
  5. 5.
    Celmins A (1987) Multidimensional least squares model fitting of fuzzy models. Math Model 9:669–690MATHCrossRefGoogle Scholar
  6. 6.
    Chang C, Lin C (2001) LIBSVM: a library for support vector machines. Software available at
  7. 7.
    Chang PT, Lee ES (1994) Fuzzy linear regression with spreads unrestricted in sign. Compt Math Appl 28:61–71MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Chang YHO, Ayyub BM (1993) Reliability analysis in fuzzy regression. In: Proc. Annual Conf. of NAFIPS'93. Allentown, IEEE, New York, pp 93–97Google Scholar
  9. 9.
    Chen MS, Wang SW (1999) Fuzzy clustering analysis for optimizing fuzzy membership functions. Fuzzy Sets Syst 103(2):239–254CrossRefGoogle Scholar
  10. 10.
    Chen Q, Kawase S (2000) On fuzzy‐valued fuzzy reasoning. Fuzzy Sets Syst 113:237–251MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Chiu S (1994) Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 2(3)267–278Google Scholar
  12. 12.
    Delgado M, Gomez–Skermata AF, Martin F (1997) Rapid prototyping of fuzzy models”. In: Hellendoorn H, Driankov D (eds) Fuzzy model identification: selected approaches. Springer, Berlin, Germany, pp 53–90 Google Scholar
  13. 13.
    Demirci M (1999) Fuzzy functions and their fundamental properties. Fuzzy Sets Syst 106:239–246MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Demirci M (2003) Foundations of fuzzy functions and vague algebra based on many‐valued equivalence relations, Part I: fuzzy functions and their applications. IJ Gen Syst 32:123–155MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Demirci M, Recasens J (2004) Fuzzy groups, fuzzy functions and fuzzy equivalence relations. Fuzzy Sets Syst 144:441–458MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Diamond P (1998) Fuzzy least squares. Inf Sci 46:141–157MathSciNetCrossRefGoogle Scholar
  17. 17.
    Emami MR, Türkşen IB, Goldenberg AA (1998) Development of a systematic methodology of fuzzy logic modeling. IEEE Tran Fuzzy Syst 63(3):346–361Google Scholar
  18. 18.
    Hathaway RJ, Bezdek JC (1993) Switching regression models and fuzzy clustering. IEEE Trans Fuzzy Syst 1(3):195–203CrossRefGoogle Scholar
  19. 19.
    Jang JSR (1993) Anfis: adaptive‐network‐based fuzzy inference systems. IEEE Trans Syst Man Cybern 23(3):665–685CrossRefGoogle Scholar
  20. 20.
    John RI, Czarnecki C (1998) A type 2 adaptive fuzzy inference system. In: Proc. IEEE Conf. Systems, Man and Cybernetics, vol 2. IEEE, New York, pp 2068–2073Google Scholar
  21. 21.
    John RI, Czarnecki C (1999) An adaptive type-2 fuzzy system for learning linguistic membership grades. In: Proc. IEEE International Fuzzy Systems Conference, vol 3. IEEE, New York, pp 1552–1556Google Scholar
  22. 22.
    Karnik NN, Mendel JM (1998) Introduction to type-2 fuzzy logic systems. In: Proc. IEEE Conf. On computational intelligence, vol 2. IEEE, New York, pp 915–920Google Scholar
  23. 23.
    Karnik NN, Mendel JM (1998) Type-2 fuzzy logic systems: type reduction. In: Proc. IEEE Conf. On Systems, Man and Cybernetics, vol 2. IEEE, New York, pp 2046–2051Google Scholar
  24. 24.
    Karnik NN, Mendel JM, Liang Q (1999) Type-2 fuzzy logic systems. IEEE Trans On Fuzzy Syst 7(6):643–658CrossRefGoogle Scholar
  25. 25.
    Karnik NN, Mendel JM (2000) Applications of type-2 fuzzy logic systems: handling the uncertainty associated with surveys. In: Proc. IEEE Conf. On Fuzzy Systems, vol 3. pp 1546–1551Google Scholar
  26. 26.
    Liang Q, Mendel JM (2000) Interval type-2 fuzzy logic systems: theory and design. IEEE Trans On Fuzzy Syst 8(5):535–550CrossRefGoogle Scholar
  27. 27.
    Mamdani EH, Assilian S (1981) An experiment in linguistic syntesis with a fuzzy logic controller. In: Mamdani EH, Gains BR (eds) Fuzzy Reasoning and Its Applications. Academic Press, New YorkGoogle Scholar
  28. 28.
    Mendel JM (2001) Uncertain rule-based fuzzy logic systems: introduction and new directions. Prentice, Upper Saddle RiverMATHGoogle Scholar
  29. 29.
    Mizumoto M (1989) Method of fuzzy inference suitable for fuzzy control. J Soc Instrum Control Eng 58:959–963Google Scholar
  30. 30.
    Mizumoto M, Tanaka K (1976) Some properties of fuzzy sets of type 2. Inf Control 31:312–340MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Nakanishi H, Türkşen IB, Sugeno M (1993) A review and comparison of six reasoning methods. Fuzzy Sets Syst 57:257–295Google Scholar
  32. 32.
    NR Pal, Bezdek JC (1995) On cluster validity for the fuzzy c-means model. IEEE Trans Fuzzy Syst 3(3)370–379CrossRefGoogle Scholar
  33. 33.
    Rutkowska D (2002) Type 2 fuzzy neural networks: an interpretation based on fuzzy inference neural networks with fuzzy parameters. In: Proc. IEEE Conf. On Fuzzy Systems, vol 2. IEEE, New York, pp 1180–1185Google Scholar
  34. 34.
    Savic D, Pedryzc W (1991) Evolution of fuzzy linear regression models. Fuzzy Sets Syst 39:51–63MATHCrossRefGoogle Scholar
  35. 35.
    Smola AJ, Scholkopf B (1998) A tutorial on support vector regression. NeuroColT2 Technical Report Series, NC2-Tr-1998–030Google Scholar
  36. 36.
    Sproule BA, Bazoon M, Shulman KI, Turkşen IB, Naranjo CA (2000) Fuzzy logic pharmacokinetic modeling: an application to lithium concentration prediction. Clinical Pharmacology Therapy 62:29–40Google Scholar
  37. 37.
    Starczewski J, Rutkowski L (2002) Connectionist structures of type 2 fuzzy inference systems. In: Wyrzykowski R et al (eds) PPAM 2001, LCNS 2328. Springer, Heidelberg, pp 634–642Google Scholar
  38. 38.
    Sugeno M, Yasukawa T (1993) A fuzzy logic based approach to qualitative modeling. IEEE Trans Fuzzy Syst 1:7–31CrossRefGoogle Scholar
  39. 39.
    Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern SMC-15(1):116–132CrossRefGoogle Scholar
  40. 40.
    Tanaka H, Ishibuchi H, Yoshikawa S (1995) Exponential possibility regression analysis. Fuzzy Sets Syst 69:305–318MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Tanaka H, Vegima S, Asai K (1982) Linear regression analysis with fuzzy model. IEEE Trans Syst Man Cybern SMC-2:903–907Google Scholar
  42. 42.
    Türkşen IB (1986) Interval valued fuzzy sets based on normal forms. Fuzzy Sets Syst 20:191–210Google Scholar
  43. 43.
    Türkşen IB (1992) Interval‐valued fuzzy sets and ‘compensatory AND’. Fuzzy Sets Syst 51:295–307Google Scholar
  44. 44.
    Türkşen IB (1995) Fuzzy normal forms. Fuzzy Sets Syst 69:319–346Google Scholar
  45. 45.
    Türkşen IB (2002) Type 2 representation and reasoning for cww. Fuzzy Sets Syst 127:17–36Google Scholar
  46. 46.
    Türkşen IB (2008) Fuzzy Functions with LSE. Applied Soft Computing 8(3):1178–1182Google Scholar
  47. 47.
    Uncu Ö, Türkşen IB (2007) A novel feature selection approach: combining feature wrappers and filters. Inf Sci 177:449–466Google Scholar
  48. 48.
    Uncu Ö, Türkşen IB (2007) Discrete Interval Type 2 Fuzzy System Models Using Uncertainty in Learning Parameters. IEEE Fuzzy Syst 15(1):90–106Google Scholar
  49. 49.
    Vapnik NV (1998) Statistical learning theory. Wiley, New YorkMATHGoogle Scholar
  50. 50.
    Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning. Inf Sci 8:199–249MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Zimmermann HJ, Zysno P (1980) Latent connectives in human decision‐making. Fuzzy Sets Syst 4:37–51MATHCrossRefGoogle Scholar

Books and Reviews

  1. 52.
    Kilic K (2002) A proposed fuzzy system modeling algorithm with an application in pharmacokinetic modeling. Ph.D Thesis, Department of Mechanical and Industrial Engineering. University of Toronto, TorontoGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • I. Burhan Türkşen
    • 1
  1. 1.Head Department of Industrial EngineeringTOBB-ETÜ (Economics and Technology University of the Union of Turkish Chambers and Commodity Exchanges)AnkaraRepublic of Turkey