Skip to main content

Fluctuations ,Importance of:Complexity in the View of Stochastic Processes

  • Reference work entry

Article Outline

Glossary

Definition of the Subject

Introduction

Stochastic Processes

Stochastic Time Series Analysis

Applications: Processes in Time

Applications: Processes in Scale

Future Directions

Further Reading

Acknowledgment

Bibliography

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,500.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Here it should be noted that the term “intermittency” is used frequently in physics for different phenomena, and may cause confusions. This turbulent intermittency is not equal to the intermittency of chaos. There are also different intermittency phenomena introduced for turbulence. There is this intermittency due to the nonlinear scaling, there is the intermittency of switches between turbulent and laminar flows for non local isotropic fully developed turbulent flows, there is the intermittency due to the statistics of small scale turbulence which we discuss here as heavy tailed statistics.

Abbreviations

Complexity in time:

Complex structures may be characterized by non regular time behavior of a describing variable \( { q \in \mathbf{R}^d } \). Thus the challenge is to understand or to model the time dependence of \( { q(t) } \), which may be achieved by a differential equation \( { \frac{\text{d}} {\text{d} t} q(t) = \dots } \) or by the discrete dynamics \( { q(t+\tau) = f(q(t), \dots) } \) fixing the evolution in the future. Of special interest are not only nonlinear equations leading to chaotic dynamics but also those which include general noise terms, too.

Complexity in space:

Complex structures may be characterized by their spatial disorder. The disorder on a selected scale l may be measured at the location x by some scale dependent quantities, \( { q(l,x) } \), like wavelets, increments and so on. The challenge is to understand or to model the features of the disorder variable \( { q(l,x) } \) on different scales l. If the moments of q show power behavior \( { \langle q(l,x)^n\rangle \propto l^{\zeta(n)} } \) the complex structures are called fractals. Well known examples of spatial complex structures are turbulence or financial market data. In the first case the complexity of velocity fluctuations over different distances l are investigated, in the second case the complexity of price changes over different time steps (time scale) are of interest.

Fokker–Planck equation:

The evolution of a variable \( { \mathbf{x}(t) } \) from \( { \mathbf{x^{\prime}} } \) at t′ to \( { \mathbf{x} } \) at t, with \( { t^{\prime}>t } \), is described in a statistical manner by the conditional probability distribution \( { p(\mathbf{x},t|\mathbf{x}^{\prime},t^{\prime}) } \). The conditional probability is subject to a Fokker–Planck equation, also known as second Kolmogorov equation, if

$$ \begin{aligned} &\frac{\partial}{\partial t}\, p(\mathbf{x},t \,|\,\mathbf{x}^{\prime}, t^{\prime}) =\\ &\quad-\sum\limits_{i=1}^{d}\frac{\partial}{\partial x_{i}} D_{i}^{(1)} (\mathbf{x},t) p(\mathbf{x},t \,|\,\mathbf{x}^{\prime},t^{\prime})\\ &\quad+\frac{1}{2}\sum\limits_{i,j=1}^{d} \frac{{\partial}^{2}}{\partial x_{i}\partial x_{j}} D_{ij}^{(2)}(\mathbf{x},t) p(\mathbf{x},t\,|\,\mathbf{x}^{\prime},t^{\prime}) \: , \end{aligned} $$

holds. Here \( { \mathbf{D}^{(1)} } \) and \( { \mathbf{D}^{(2)} } \) are the drift vector and the diffusion matrix, respectively.

Kramers–Moyal coefficients:

Knowing for a stochastic process the conditional probability distribution \( { p(\mathbf{x(t)},t|\mathbf{x}^{\prime},t^{\prime}) } \), for all t and t′ the Kamers–Moyal coefficients can be estimated as nth order moments of the conditional probability distribution. In this way also the drift and diffusion coefficient of the Fokker–Planck equation can be obtained form the empirically measured conditional probability distributions.

Langevin equation:

The time evolution of a variable \( { \mathbf{x}(t) } \) is described by Langevin equation if for \( { \mathbf{x}(t) } \) it holds:

$$ \frac{\text{d}} {\text{d} t} \mathbf{x}(\mathbf{t}) =\mathbf{D}^{(1)}(\mathbf{x},\mathbf{t}) \cdot \tau + \sqrt{\mathbf{D}^{(2)} (\mathbf{x},\mathbf{t})} \cdot \boldsymbol{\Gamma}(\mathbf{t}_i) \: .$$

Using Itô's interpretation the deterministic part of the differential equation is equal to the drift term, the noise amplitude is equal to the square root of the diffusion term of a corresponding Fokker–Planck equation. Note, for vanishing noise a purely deterministic dynamics is included in this description.

Stochastic process in scale:

For the description of complex system with spatial or scale disorder usually a measure of disorder on different scales \( { q(l,x) } \) is used. A stochastic process in scale is now a description of the l evolution of \( { q(l,x) } \) by means of stochastic equations. As a special case the single event \( { q(l,x) } \) follows a Langevin equation, whereas the probability \( { p(q(l)) } \) follows a Fokker–Planck equation.

Bibliography

  1. Haken H (1983) Synergetics, An Introduction.Springer,Berlin

    Book  MATH  Google Scholar 

  2. Haken H (1987) Advanced Synergetics.Springer,Berlin

    Google Scholar 

  3. Haken H (2000) Information and Self-Organization: A Macroscopic Approach toComplex Systems.Springer, Berlin

    MATH  Google Scholar 

  4. Kantz H, Schreiber T (1997) Nonlinear Time Series Analysis. CambridgeUniversity Press, Cambridge

    MATH  Google Scholar 

  5. Yanovsky VV, Chechkin AV, Schertzer D, Tur AV (2000) Physica A282:13

    Article  Google Scholar 

  6. Schertzer D, Larchevéque M, Duan J, Yanovsky VV, Lovejoy S (2001) J Math Phys42:200

    Google Scholar 

  7. Gnedenko BV, Kolmogorov AN (1954) Limit distributions of sums of independentrandom variables. Addison-Wesley, Cambridge

    MATH  Google Scholar 

  8. Risken H (1989) The Fokker-Planck Equation.Springer,Berlin

    Book  MATH  Google Scholar 

  9. Gardiner CW (1983) Handbook of Stochastic Methods.Springer,Berlin

    Book  MATH  Google Scholar 

  10. van Kampen NG (1981) Stochastic processes in physics and chemistry.North-Holland Publishing Company, Amsterdam

    MATH  Google Scholar 

  11. Hänggi P, Thomas H (1982) Stochastic processes: time evolution, symmetries andlinear response.Phys Rep 88:207

    Google Scholar 

  12. Einstein A (1905) Über die von der molekularkinetischen Theorie derWärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen.Ann Phys 17:549

    Article  MATH  Google Scholar 

  13. Friedrich R, Zeller J, Peinke J (1998) A Note in Three Point Statisticsof Velocity Increments in Turbulence.Europhys Lett 41:153

    Article  Google Scholar 

  14. Lück S, Renner Ch, Peinke J,Friedrich R (2006) The Markov Einstein coherence length a new meaning for the Taylor length in turbulence.Phys Lett A 359:335

    Google Scholar 

  15. Tabar MRR, Sahimi M, Ghasemi F, Kaviani K, Allamehzadeh M, Peinke J, MokhtariM, Vesaghi M, Niry MD, Bahraminasab A, Tabatabai S, Fayazbakhsh S, Akbari M (2007) Short-Term Prediction of Mediumand Large-Size Earthquakes Based onMarkov and Extended Self-Similarity Analysis of Seismic Data.In: Bhattacharyya P, Chakrabarti BK (eds) Modelling Critical and Catastrophic Phenomena inGeoscience.Lecture Notes in Physics, vol 705. Springer, Berlin, pp 281–301

    Chapter  Google Scholar 

  16. Kolmogorov AN (1931) Über die analytischen Methoden in derWahrscheinlichkeitsrechnung.Math Ann 140:415

    Article  Google Scholar 

  17. Siefert M, Kittel A, Friedrich R, Peinke J (2003) On a quantitativemethod to analyze dynamical and measurement noise.Europhys Lett 61:466

    Article  Google Scholar 

  18. Böttcher F, Peinke J, Kleinhans D, Friedrich R, Lind PG, Haase M (2006) On theproper reconstruction of complex dynamical systems spoilt by strong measurement noise.Phys Rev Lett 97:090603

    Google Scholar 

  19. Kleinhans D, Friedrich R, Wächter M, Peinke J (2007) Markov properties underthe influence of measurement noise.Phys Rev E 76:041109

    Google Scholar 

  20. Renner C, Peinke J, Friedrich R (2001) Experimental indications for Markovproperties of small scale turbulence.J Fluid Mech 433:383

    MATH  Google Scholar 

  21. Tutkun M, Mydlarski L (2004) Markovian properties of passive scalar incrementsin grid-generated turbulence.New J Phys 6:49

    Article  Google Scholar 

  22. Marcq P, Naert A (2001) A Langevin equation for turbulent velocityincrements.Phys Fluids 13:2590

    Article  Google Scholar 

  23. Langner M, Peinke J, Rauh A (2008) A Langevin analysis with applicationto a Rayleigh-Bénard convection experiment. Exp Fluids (submitted)

    Google Scholar 

  24. Wächter M, Kouzmitchev A, Peinke J (2004) Increment definitions forsale-dependent analysis of stochastic data.Phys Rev E 70:055103(R)

    Google Scholar 

  25. Ragwitz M, Kantz H (2001) Indispensable finite time corrections forFokker-Planck equations from time series.Phys Rev Lett 87:254501

    Article  Google Scholar 

  26. Ragwitz M, Kantz H (2002) Comment on: Indispensable finite time correlationsfor Fokker-Planck equations from time series data-Reply.Phys Rev Lett 89:149402

    Article  Google Scholar 

  27. Friedrich R, Renner C, Siefert M, Peinke J (2002) Comment on: Indispensablefinite time correlations for Fokker-Planck equations from time series data.Phys Rev Lett 89:149401

    Article  Google Scholar 

  28. Siegert S, Friedrich R (2001) Modeling nonlinear Lévy processes by dataanalysis.Phys Rev E 64:041107

    Article  Google Scholar 

  29. Kleinhans D, Friedrich R, Nawroth AP, Peinke J (2005) An iterative procedure forthe estimation of drift and diffusion coefficients of Langevin processes.Phys Lett A 346:42

    Article  MathSciNet  MATH  Google Scholar 

  30. Kleinhans D, Friedrich R (2007) Note on Maximum Likelihood estimation of driftand diffusion functions.Phys Lett A 368:194

    Article  MathSciNet  MATH  Google Scholar 

  31. Nawroth AP, Peinke J, Kleinhans D, Friedrich R (2007) Improved estimation ofFokker-Planck equations through optimisation.Phys Rev E 76:056102

    Article  Google Scholar 

  32. Gradisek J, Grabec I, Siegert S, Friedrich R (2002).Stochastic dynamics ofmetal cutting: Bifurcation phenomena in turning.Mech Syst Signal Process 16(5):831

    Google Scholar 

  33. Gradisek J, Siegert S, Friedrich R, Grabec I (2002) Qualitative andquantitative analysis of stochastic processes based on measured data-I.Theory and applications to synthetic data.J Sound Vib252(3):545

    Article  Google Scholar 

  34. Purwins HG, Amiranashvili S (2007) Selbstorganisierte Strukturen im Strom.Phys J 6(2):21

    Google Scholar 

  35. Bödeker HU, Röttger M, LiehrAW, Frank TD, Friedrich R, Purwins HG (2003) Noise-covered drift bifurcation of dissipative solitons in planargas-discharge systems.Phys Rev E 67:056220

    Google Scholar 

  36. Purwins HG, Bödeker HU, Liehr AW (2005) In: Akhmediev N, Ankiewicz A (eds)Dissipative Solitons.Springer, Berlin

    Google Scholar 

  37. Bödeker HU, Liehr AW, Frank TD, Friedrich R, Purwins HG (2004) Measuring theinteraction law of dissipative solitions.New J Phys 6:62

    Google Scholar 

  38. Liehr AW, Bödeker HU, Röttger M, Frank TD, Friedrich R, Purwins HG (2003)Drift bifurcation detection for dissipative solitons.New J Phys 5:89

    Google Scholar 

  39. Friedrich R, Siegert S, Peinke J, Lück S, Siefert M, Lindemann M, Raethjen J,Deuschl G, Pfister G (2000) Extracting model equations from experimental data.Phys Lett A 271:217

    Google Scholar 

  40. Siefert M Peinke J (2004) Reconstruction of the Deterministic Dynamics ofStochastic systems.Int J Bifurc Chaos 14:2005

    Article  MATH  Google Scholar 

  41. Anahua E, Lange M, Böttcher F, Barth S, Peinke J (2004) Stochastic Analysis ofthe Power Output for a Wind Turbine.DEWEK 2004, Wilhelmshaven, 20–21 October 2004

    Google Scholar 

  42. Anahua E, Barth S, Peinke J (2006) Characterization of the wind turbine powerperformance curve by stochastic modeling. EWEC 2006, BL3.307, Athens, February 27–March 2

    Google Scholar 

  43. Anahua E, Barth S, Peinke J (2007) Characterisation of the power curve forwind turbines by stochastic modeling.In: Peinke J, Schaumann P, Barth S (eds) Wind Energy – Proceedings of the Euromech Colloquium.Springer, Berlin, p 173–177

    Chapter  Google Scholar 

  44. Anahua E, Barth S, Peinke J (2008) Markovian Power Curves for Wind Turbines.Wind Energy 11:219

    Article  Google Scholar 

  45. Kriso S, Friedrich R, Peinke J, Wagner P (2002) Reconstruction of dynamicalequations for traffic flow.Phys Lett A 299:287

    Article  MATH  Google Scholar 

  46. Kern M, Buser O, Peinke J, Siefert M, Vulliet L (2005) Stochastic analysis ofsingle particle segregational dynamics.Phys Lett A 336:428

    Article  MATH  Google Scholar 

  47. Kuusela T (2004) Stochastic heart-rate model can reveal pathologic cardiacdynamics.Phys Rev E 69:031916

    Article  Google Scholar 

  48. Ghasemi F, Peinke J, Reza Rahimi Tabar M, Muhammed S (2006) Statisticalproperties of the interbeat interval cascade in human subjects.Int J Mod Phys C 17:571

    Article  MATH  Google Scholar 

  49. Ghasemi F, Sahimi M, Peinke J, Reza Rahimi Tabar M (2006) Analysis ofNon-stationary Data for Heart-rate Fluctuations in Terms of Drift and Diffusion Coefficients.J Biological Phys 32:117

    Article  Google Scholar 

  50. Tabar MRR, Ghasemi F, Peinke J, Friedrich R, Kaviani K, Taghavi F, Sadghi S,Bijani G, Sahimi M (2006) New computational approaches to analysis of interbeat intervals in human subjects.Comput Sci Eng8:54

    Article  Google Scholar 

  51. Prusseit J, Lehnertz K (2007) Stochastic Qualifiers of Epileptic BrainDynamics.Phys Rev Lett 98:138103

    Article  Google Scholar 

  52. Sura P, Gille ST (2003) Interpreting wind-driven Southern Ocean variability ina stochastic framework.J Marine Res 61:313

    Article  Google Scholar 

  53. Sura P (2003) Stochastic Analysis of Southern and Pacific Ocean Sea SurfaceWinds.J Atmospheric Sci 60:654

    Article  Google Scholar 

  54. Egger J, Jonsson T (2002) Dynamic models for islandic meteorological datasets.Tellus A 51(1):1

    Article  Google Scholar 

  55. Letz T, Peinke J, Kittel A (2008) How to characterize chaotic time seriesdistorted by interacting dynamical noise. Preprint

    Google Scholar 

  56. Siegert S, Friedrich R, Peinke J (1998) Analysis of data sets of stochasticsystems.Phys Lett A 234:275–280

    Article  MathSciNet  Google Scholar 

  57. Gradisek J, Siegert S, Friedrich R, Grabec I (2000) Analysis of time seriesfrom stochastic processes.Phys Rev E 62:3146

    Article  Google Scholar 

  58. Gradisek J, Friedrich R, Govekar E, Grabec I (2002) Analysis of data fromperiodically forced stochastic processes.Phys Lett A 294:234

    Article  MATH  Google Scholar 

  59. Frank TD, Beek PJ, Friedrich R (2004) Identifying noise sources oftime-delayed feedback systems.Phys Lett A 328:219

    Article  MATH  Google Scholar 

  60. Patanarapeelert K, Frank TD, Friedrich R, Beek PJ, Tang IM (2006) A dataanalysis method for identifying deterministic components of stable and unstable time-delayed systems with colored noise.Phys Lett A360:190

    Article  Google Scholar 

  61. Shinriki M, Yamamoto M, Mori S (1981) Multimode Oscillations ina Modified Van-der-Pol Oscillator Containing a Positive Nonlinear Conductance.Proc IEEE 69:394

    Article  Google Scholar 

  62. Friedrich R, Peinke J (1997).Statistical properties of a turbulentcascade.Physica D 102:147

    Article  MATH  Google Scholar 

  63. Friedrich R, Peinke J (1997) Description of a turbulent cascade bya Fokker-Planck equation.Phys Rev Lett 78:863

    Article  Google Scholar 

  64. Siefert M, Peinke J (2006) Joint multi-scale statistics of longitudinal andtransversal increments in small-scale wake turbulence.J Turbul 7:1

    Article  MathSciNet  Google Scholar 

  65. Friedrich R, Peinke J, Renner C (2000) How to quantify deterministic andrandom influences on the statistics of the foreign exchange market.Phys Rev Lett 84:5224

    Article  Google Scholar 

  66. Renner C, Peinke J, Friedrich R (2001) Markov properties of high frequencyexchange rate data.Physica A 298:499–520

    Article  MATH  Google Scholar 

  67. Ghasemi F, Sahimi M, Peinke J, Friedrich R, Reza Jafari G, Reza Rahimi Tabar M(2007) Analysis of Nonstationary Stochastic Processes with Application to the Fluctuations in the Oil Price.Phys Rev E (Rapid Commun) 75:060102

    Article  Google Scholar 

  68. Farahpour F, Eskandari Z, Bahraminasab A, Jafari GR, Ghasemi F, Reza RahimiTabar M, Muhammad Sahimi (2007) An Effective Langevin Equation for the Stock Market Indices in Approach of Markov Length Scale. Physica A385:601

    Article  Google Scholar 

  69. Wächter M, Riess F, Kantz H, Peinke J (2003) Stochastic analysis of raodsurface roughness.Europhys Lett 64:579

    Google Scholar 

  70. Jafari GR, Fazeli SM, Ghasemi F, Vaez Allaei SM, Reza Rahimi Tabar M, Irajizad A, Kavei G (2003) Stochastic Analysis and Regeneration of Rough Surfaces.Phys Rev Lett 91:226101

    Article  Google Scholar 

  71. Friedrich R, Galla T, Naert A, Peinke J, Schimmel T (1998) DisorderedStructures Analyzed by the Theory of Markov Processes.In: Parisi J, Müller S, Zimmermann W (eds) A Perspective Look at Nonlinear Media.LectureNotes in Physics, vol 503.Springer, Berlin

    Google Scholar 

  72. Waechter M, Riess F, Schimmel T, Wendt U, Peinke J (2004) Stochastic analysisof different rough surfaces.Eur Phys J B 41:259

    Article  Google Scholar 

  73. Sangpour P, Akhavan O, Moshfegh AZ, Jafari GR, Reza Rahimi Tabar M (2005)Controlling Surface Statistical Properties Using Bias Voltage: Atomic force microscopy and stochastic analysis.Phys Rev B71:155423

    Article  Google Scholar 

  74. Jafari GR, Reza Rahimi Tabar M, Iraji zad A, Kavei G (2007) Etched GlassSurfaces, Atomic Force Microscopy and Stochastic Analysis.J Phys A 375:239

    Google Scholar 

  75. Ghasemi F, Bahraminasab A, Sadegh Movahed M, Rahvar S, Sreenivasan KR, RezaRahimi Tabar M (2006) Characteristic Angular Scales of Cosmic Microwave Background Radiation.J Stat Mech P11008

    Google Scholar 

  76. Nawroth AP, Peinke J (2006) Multiscale reconstruction of time series.PhysLett A 360:234

    Article  Google Scholar 

  77. Ghasemi F, Peinke J, Sahimi M, Reza Rahimi Tabar M (2005) Regeneration ofStochastic Processes: An Inverse Method.Eur Phys J B 47:411

    Article  Google Scholar 

  78. Kolmogorov AN (1941) Dissipation of energy in locally isotropic turbulence.Dokl Akad Nauk SSSR 32:19

    Google Scholar 

  79. Kolmogorov AN (1962) A refinement of previous hypotheses concerning thelocal structure of turbulence in a viscous incompressible fluid at high Reynolds number.J Fluid Mech 13:82

    Article  MathSciNet  MATH  Google Scholar 

  80. Frisch U (1995) Turbulence.Cambridge University Press, Cambridge

    Google Scholar 

  81. Sreenivasan KR, Antonia RA (1997) The phenomenology of small-scale turbulence.Annu Rev Fluid Mech 29:435–472

    Article  MathSciNet  Google Scholar 

  82. Ghashghaie S, Breymann W, Peinke J, Talkner P, Dodge Y (1996) TurbulentCascades in Foreign Exchange Markets.Nature 381:767–770

    Article  Google Scholar 

  83. Nawroth AP, Peinke J (2006) Small scale behavior of financial data.Eur PhysJ B 50:147

    Article  Google Scholar 

  84. Karth M, Peinke J (2002) Stochastic modelling of fat-tailed probabilities offoreign exchange rates.Complexity 8:34

    Article  MathSciNet  Google Scholar 

  85. Bouchaud JP, Potters M, Meyer M (2000) Apparent multifractality in financialtime series.Eur Phys J B 13:595–599

    Google Scholar 

  86. Bouchaud JP (2001) Power laws in economics and finance: some ideas fromphysics Quant Finance 1:105–112

    Google Scholar 

  87. Mandelbrot BB (2001) Scaling in financial prices: I. Tails anddependence. II. Multifractals and the star equation.Quant Finance 1:113–130

    Article  MathSciNet  Google Scholar 

  88. Embrechts P, Klüppelberg C, Mikosch T (2003) Modelling extremal events.Springer, Berlin

    Google Scholar 

  89. Mantegna RN, Stanley HE (1995) Nature376:46–49

    Article  Google Scholar 

  90. McCauley J (2000) The Futility of Utility: how market dynamics marginalizeAdam Smith.Physica A 285:506–538

    Article  MATH  Google Scholar 

  91. Muzy JF, Sornette D, Delour J, Areneodo A (2001) Multifractal returns andhierarchical portfolio theory.Quant Finance 1:131–148

    Article  MathSciNet  Google Scholar 

  92. Viscek T (1992) Fractal Growth Phenomena.World Scientific,Singapore

    Google Scholar 

  93. Renner C, Peinke J, Friedrich R (2000) Markov properties of high frequencyexchange rate data.Int J Theor Appl Finance 3:415

    Article  Google Scholar 

  94. Davoudi J, Reza Rahimi Tabar M (1999) Theoretical Model for Kramers-Moyal'sdescription of Turbulence Cascade.Phys Rev Lett 82:1680

    Article  Google Scholar 

  95. Renner C, Peinke J, Friedrich R, Chanal O, Chabaud B (2002) Universality ofsmall scale turbulence.Phys Rev Lett 89:124502

    Article  Google Scholar 

  96. Siefert M, Peinke J (2004) Different cascade speeds for longitudinal andtransverse velocity increments of small-scale turbulence.Phys Rev E 70:015302R

    Article  Google Scholar 

Download references

Acknowledgment

The scientific results reported in this review have been worked out in close collaboration with many colleagues and students.We mention St. Barth,F. Böttcher, F. Ghasemi, I. Grabec, J. Gradisek, M. Haase, A. Kittel, D. Kleinhans, St. Lück, A. Nawroth, Chr. Renner,M. Siefert, and S. Siegert.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Friedrich, R., Peinke, J., Reza Rahimi Tabar, M. (2012). Fluctuations ,Importance of:Complexity in the View of Stochastic Processes . In: Meyers, R. (eds) Computational Complexity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1800-9_71

Download citation

Publish with us

Policies and ethics