Skip to main content

Ergodic Theory of Cellular Automata

  • Reference work entry

Article Outline

Glossary

Definition of the Subject

Introduction

Invariant Measures for CA

Limit Measures and Other Asymptotics

Measurable Dynamics

Entropy

Future Directions and Open Problems

Acknowledgments

Bibliography

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,500.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Configuration space and the shift :

Let \( { {\mathbb{M}} } \) be a finitely generated group or monoid (usually abelian). Typically, \( { {\mathbb{M}}=\mathbb{N}:=\{0,1,2,\ldots\} } \) or \( {\mathbb{M}}=\mathbb{Z}:=\{\ldots, -1,0,1,2,\ldots\} \), or \( { {\mathbb{M}}=\mathbb{N}^E } \), \( { \mathbb{Z} } \) D, or \( { \mathbb{Z}^D\times\mathbb{N}^E } \) for some \( { D,E\in\mathbb{N} } \). In some applications, \( { {\mathbb{M}} } \) could be nonabelian (although usually amenable), but to avoid notational complexity we will generally assume \( { {\mathbb{M}} } \) is abelian and additive, with operation ‘+’.

Let \( { {\mathcal{A}} } \) be a finite set of symbols (called an alphabet ). Let \( { \mathcal{A}^{\mathbb{M}} } \) denote the set of all functions \( { {\mathbf{a}}\colon{\mathbb{M}}{\longrightarrow}{\mathcal{A}} } \), which we regard as \( { {\mathbb{M}} } \)?indexed configurations of elements in \( { {\mathcal{A}} } \). We write such a configuration as \( { {\mathbf{a}}=[a_{\textsf{m}}]_{{\textsf{m}}\in{\mathbb{M}}} } \), where \( { a_{\textsf{m}}\in{\mathcal{A}} } \) for all \( { {\textsf{m}}\in{\mathbb{M}} } \), and refer to \( { \mathcal{A}^{\mathbb{M}} } \) as configuration space .

Treat \( { {\mathcal{A}} } \) as a discrete topological space; then \( { {\mathcal{A}} } \) is compact (because it is finite), so \( { \mathcal{A}^{\mathbb{M}} } \) is compact in the Tychonoff product topology. In fact, \( { \mathcal{A}^{\mathbb{M}} } \) is a  Cantor space : it is compact, perfect, totally disconnected, and metrizable. For example, if \( { {\mathbb{M}}=\mathbb{Z}^D } \), then the standard metric on \( { \mathcal{A}^{\mathbb{Z}^D} } \) is defined \( { d({\mathbf{a}},{\mathbf{b}})=2^{-\Delta({\mathbf{a}},{\mathbf{b}})} } \), where \( { \Delta({\mathbf{a}},{\mathbf{b}}):=\min{\{|{\textsf{z}}|; a_{\textsf{z}}\neq b_{\textsf{z}}\}} } \).

Any \( { {\textsf{v}}\in{\mathbb{M}} } \), determines a continuous shift map \( { \sigma^v\colon \mathcal{A}^{\mathbb{M}}{\longrightarrow}\mathcal{A}^{\mathbb{M}} } \) defined by \( { \sigma^v (\mathbf{a})_{\textsf{m}} = a_{{\textsf{m}}+{\textsf{v}}} } \) for all \( { {\mathbf{a}}\in\mathcal{A}^{\mathbb{M}} } \) and \( { {\textsf{m}}\in{\mathbb{M}} } \). The set \( { \{\sigma^v\}_{{\textsf{v}}\in{\mathbb{M}}} } \) is then a continuous \( { {\mathbb{M}} } \)?action on \( { \mathcal{A}^{\mathbb{M}} } \), which we denote simply by “σ”.

If \( { {\mathbf{a}}\in\mathcal{A}^{\mathbb{M}} } \) and \( { {\mathbb{U}}\subset{\mathbb{M}} } \), then we define \( { {\mathbf{a}}_{\mathbb{U}}\in{\mathcal{A}}^{\mathbb{U}} } \) by \( { {\mathbf{a}}_{\mathbb{U}}:=[a_{\textsf{u}}]_{{\textsf{u}}\in{\mathbb{U}}} } \). If \( { {\textsf{m}}\in{\mathbb{M}} } \), then strictly speaking, \( { {\mathbf{a}}_{{\textsf{m}}+{\mathbb{U}}}\in{\mathcal{A}}^{{\textsf{m}}+{\mathbb{U}}} } \); however, it will often be convenient to ‘abuse notation’ and treat \( { {\mathbf{a}}_{{\textsf{m}}+{\mathbb{U}}} } \) as an element of \( { {\mathcal{A}}^{{\mathbb{U}}} } \) in the obvious way.

Cellular automata :

Let \( { \mathbb{H}\subset{\mathbb{M}} } \) be some finite subset, and let \( { \phi\colon{\mathcal{A}}^{\mathbb{H}}{\longrightarrow}{\mathcal{A}} } \) be a function (called a  local rule ). The cellular automaton (CA) determined by ? is the function \( { \Phi\colon\mathcal{A}^{\mathbb{M}}{\longrightarrow}\mathcal{A}^{\mathbb{M}} } \) defined by \( { \Phi({\mathbf{a}})_{{\textsf{m}}} = \phi({\mathbf{a}}_{{\textsf{m}}+\mathbb{H}}) } \) for all \( { {\mathbf{a}}\in\mathcal{A}^{\mathbb{M}} } \) and \( { {\textsf{m}}\in{\mathbb{M}} } \). Curtis, Hedlund and Lyndon showed that cellular automata are exactly the continuous transformations of \( { \mathcal{A}^{\mathbb{M}} } \) which commute with all shifts (see Theorem 3.4 in [58]). We refer to \( { \mathbb{H} } \) as the neighborhood of Φ. For example, if \( { {\mathbb{M}}=\mathbb{Z} } \), then typically \( { \mathbb{H}:=[-\ell \ldots r]:=\{-\ell,1-\ell,\ldots,r-1,r\} } \) for some left radius \( { \ell \geq 0 } \) and right radius \( { r \geq 0 } \). If \( { -\ell \geq 0 } \), then ? can either define CA on \( { \mathcal{A}^{\mathbb{N}} } \) or define a  one-sided CA on \( { \mathcal{A}^{\mathbb{Z}} } \). If \( { {\mathbb{M}}=\mathbb{Z}^D } \), then typically \( { \mathbb{H}\subseteq[-R \ldots R]^D } \), for some radius \( { R\geq 0 } \). Normally we assume that \( { \ell } \), r, and R are chosen to be minimal. Several specific classes of CA will be important to us:

Linear CA :

Let \( { ({\mathcal{A}},+) } \) be a finite abelian group (e.?g. \( { {\mathcal{A}}=\mathbb{Z}_{/p} } \), where \( { p\in\mathbb{N} } \); usually p is prime). Then Φ is a  linear CA (LCA) if the local rule ? has the form

$$ \phi({\mathbf{a}}_\mathbb{H}) := \sum_{\textsf{h}\in\mathbb{H}} \varphi_{\textsf{h}}(a_{\textsf{h}})\:,\quad \forall \mathbf{a}_\mathbb{H} \in \mathcal{A}^{\mathbb{H}}\:, $$
(1)

where \( { \varphi_{\textsf{h}}\colon\mathcal{A}{\longrightarrow}\mathcal{A} } \) is an endomorphism of \( { (\mathcal{A},+) } \), for each \( { \textsf{h}\in\mathbb{H} } \). We say that Φ has scalar coefficients if, for each \( { \textsf{h}\in\mathbb{H} } \), there is some scalar \( { c_{\textsf{h}}\in\mathbb{Z} } \), so that \( { \varphi_{\textsf{h}}(a_{\textsf{h}}) := c_{\textsf{h}} \cdot a_{\textsf{h}} } \); then \( { \phi({\mathbf{a}}_\mathbb{H}) := \sum_{\textsf{h}\in\mathbb{H}} c_{\textsf{h}} a_{\textsf{h}} } \). For example, if \( \mathcal{A}=(\mathbb{Z}_{/p},+) \), then all endomorphisms are scalar multiplications, so all LCA have scalar coefficients.

If \( { c_{\textsf{h}}=1 } \) for all \( { \textsf{h}\in\mathbb{H} } \), then Φ has local rule \( { \phi(\mathbf{a}_\mathbb{H}) := \sum_{\textsf{h}\in\mathbb{H}} a_{\textsf{h}} } \); in this case, Φ is called an additive cellular automaton ; see Additive Cellular Automata.

Affine CA :

If \( { ({\mathcal{A}},+) } \) is a finite abelian group, then an affine CA is one with a local rule \( \phi({\mathbf{a}}_\mathbb{H}) := c+ \sum_{\textsf{h}\in\mathbb{H}} \varphi_{\textsf{h}}(a_{\textsf{h}}) \), where c is some constant and where \( { \varphi_{\textsf{h}}\colon{\mathcal{A}}{\longrightarrow}{\mathcal{A}} } \) are endomorphisms of \( { ({\mathcal{A}},+) } \). Thus, Φ is an LCA if \( { c=0 } \).

Permutative CA :

Suppose \( \Phi\colon\mathcal{A}^{\mathbb{Z}}{\longrightarrow}\mathcal{A}^{\mathbb{Z}} \) has local rule \( \phi\colon{\mathcal{ A}}^{[-\ell \ldots r]}{\longrightarrow}{\mathcal{A}} \). Fix \( {\mathbf{b}}=[b_{1-\ell},\ldots, b_{r-1}, b_r]\in{\mathcal{A}}^{(-\ell \ldots r]} \). For any \( { a\in{\mathcal{A}} } \), define \( [a\;{\mathbf{b}}]:=[a,b_{1-\ell},\ldots,b_{r-1},b_r]\in {\mathcal{A}}^{[-\ell \ldots r]} \). We then define the function \( \phi_{\mathbf{b}}\colon{\mathcal{A}}{\longrightarrow}{\mathcal{A}} \) by \( \phi_{\mathbf{b}}(a) := \phi([a\;{\mathbf{b}}]) \). We say that Φ is left‐permutative if \( \phi_{\mathbf{b}}\colon{\mathcal{A}}{\longrightarrow}{\mathcal{A}} \) is a permutation (i.?e. a bijection) for all \( { \mathbf{b}\in\mathcal{A}^{(-\ell \ldots r]} } \).

Likewise, given \( { {\mathbf{b}}=[b_{-\ell},\ldots,b_{r-1}]\in{\mathcal{A}}^{[-\ell \ldots r)} } \) and \( { c\in{\mathcal{A}} } \), define \( [{\mathbf{b}}\;c]:=[b_{-\ell},b_{1-\ell}\ldots,b_{r-1},c]\in{\mathcal{A}}^{[-\ell \ldots r]} \), and define \( _{\mathbf{b}}\phi\colon{\mathcal{A}}{\longrightarrow}{\mathcal{A}} \) by \( _{\mathbf{b}}\phi(c) := \phi([{\mathbf{b}} c]) \); then Φ is right‐permutative if \( _{\mathbf{b}}\phi\colon {\mathcal{A}}{\longrightarrow} {\mathcal{A}} \) is a permutation for all \( {\mathbf{b}}\in{\mathcal{A}}^{[-\ell \ldots r)} \). We say Φ is bipermutative if it is both left- and right‐permutative. More generally, if \( { {\mathbb{M}} } \) is any monoid, \( { \mathbb{H}\subset{\mathbb{M}} } \) is any neighborhood, and \( { \textsf{h}\in\mathbb{H} } \) is any fixed coordinate, then we define h?permutativity for a CA on \( { \mathcal{A}^{\mathbb{M}} } \) in the obvious fashion.

For example, suppose \( { ({\mathcal{A}},+) } \) is an abelian group and Φ is an affine CA on \( { \mathcal{A}^{\mathbb{Z}} } \) with local rule \( \phi({\mathbf{a}}_\mathbb{H}) = c + \sum_{h=-\ell}^r \varphi_h(a_h) \). Then Φ is left‐permutative iff \( { \varphi_{-\ell} } \) is an automorphism, and right‐permutative iff \( { \varphi_r } \) is an automorphism. If \( { {\mathcal{A}}=\mathbb{Z}_{/p} } \), and p is prime, then every nontrivial endomorphism is an automorphism(because it is multiplication by a nonzero element of \( { \mathbb{Z}_{/p} } \), which is a field), so in this case, every affine CA is permutative in every coordinate of its neighborhood (and in particular, bipermutative). If \( { {\mathcal{A}}\neq\mathbb{Z}_{/p} } \), however, then not all affine CA are permutative.

Permutative CA were introduced by Hedlund [58], §6, and are sometimes called permutive CA. Right permutative CA on \( \smash{ \mathcal{A}^{\mathbb{N}} } \) are also called toggle automata . For more information, see Sect. 7 of Topological Dynamics of Cellular Automata.

Linear CA :

Let \( { ({\mathcal{A}},+) } \) be a finite abelian group (e.?g. \( { {\mathcal{A}}=\mathbb{Z}_{/p} } \), where \( { p\in\mathbb{N} } \); usually p is prime). Then Φ is a  linear CA (LCA) if the local rule ? has the form

$$ \phi({\mathbf{a}}_\mathbb{H}) := \sum_{\textsf{h}\in\mathbb{H}} \varphi_{\textsf{h}}(a_{\textsf{h}})\:,\quad \forall \mathbf{a}_\mathbb{H} \in \mathcal{A}^{\mathbb{H}}\:, $$
(1)

where \( { \varphi_{\textsf{h}}\colon\mathcal{A}{\longrightarrow}\mathcal{A} } \) is an endomorphism of \( { (\mathcal{A},+) } \), for each \( { \textsf{h}\in\mathbb{H} } \). We say that Φ has scalar coefficients if, for each \( { \textsf{h}\in\mathbb{H} } \), there is some scalar \( { c_{\textsf{h}}\in\mathbb{Z} } \), so that \( { \varphi_{\textsf{h}}(a_{\textsf{h}}) := c_{\textsf{h}} \cdot a_{\textsf{h}} } \); then \( { \phi({\mathbf{a}}_\mathbb{H}) := \sum_{\textsf{h}\in\mathbb{H}} c_{\textsf{h}} a_{\textsf{h}} } \). For example, if \( \mathcal{A}=(\mathbb{Z}_{/p},+) \), then all endomorphisms are scalar multiplications, so all LCA have scalar coefficients.

If \( { c_{\textsf{h}}=1 } \) for all \( { \textsf{h}\in\mathbb{H} } \), then Φ has local rule \( { \phi(\mathbf{a}_\mathbb{H}) := \sum_{\textsf{h}\in\mathbb{H}} a_{\textsf{h}} } \); in this case, Φ is called an additive cellular automaton ; see Additive Cellular Automata.

Affine CA :

If \( { ({\mathcal{A}},+) } \) is a finite abelian group, then an affine CA is one with a local rule \( \phi({\mathbf{a}}_\mathbb{H}) := c+ \sum_{\textsf{h}\in\mathbb{H}} \varphi_{\textsf{h}}(a_{\textsf{h}}) \), where c is some constant and where \( { \varphi_{\textsf{h}}\colon{\mathcal{A}}{\longrightarrow}{\mathcal{A}} } \) are endomorphisms of \( { ({\mathcal{A}},+) } \). Thus, Φ is an LCA if \( { c=0 } \).

Permutative CA :

Suppose \( \Phi\colon\mathcal{A}^{\mathbb{Z}}{\longrightarrow}\mathcal{A}^{\mathbb{Z}} \) has local rule \( \phi\colon{\mathcal{ A}}^{[-\ell \ldots r]}{\longrightarrow}{\mathcal{A}} \). Fix \( {\mathbf{b}}=[b_{1-\ell},\ldots, b_{r-1}, b_r]\in{\mathcal{A}}^{(-\ell \ldots r]} \). For any \( { a\in{\mathcal{A}} } \), define \( [a\;{\mathbf{b}}]:=[a,b_{1-\ell},\ldots,b_{r-1},b_r]\in {\mathcal{A}}^{[-\ell \ldots r]} \). We then define the function \( \phi_{\mathbf{b}}\colon{\mathcal{A}}{\longrightarrow}{\mathcal{A}} \) by \( \phi_{\mathbf{b}}(a) := \phi([a\;{\mathbf{b}}]) \). We say that Φ is left‐permutative if \( \phi_{\mathbf{b}}\colon{\mathcal{A}}{\longrightarrow}{\mathcal{A}} \) is a permutation (i.?e. a bijection) for all \( { \mathbf{b}\in\mathcal{A}^{(-\ell \ldots r]} } \).

Likewise, given \( { {\mathbf{b}}=[b_{-\ell},\ldots,b_{r-1}]\in{\mathcal{A}}^{[-\ell \ldots r)} } \) and \( { c\in{\mathcal{A}} } \), define \( [{\mathbf{b}}\;c]:=[b_{-\ell},b_{1-\ell}\ldots,b_{r-1},c]\in{\mathcal{A}}^{[-\ell \ldots r]} \), and define \( _{\mathbf{b}}\phi\colon{\mathcal{A}}{\longrightarrow}{\mathcal{A}} \) by \( _{\mathbf{b}}\phi(c) := \phi([{\mathbf{b}} c]) \); then Φ is right‐permutative if \( _{\mathbf{b}}\phi\colon {\mathcal{A}}{\longrightarrow} {\mathcal{A}} \) is a permutation for all \( {\mathbf{b}}\in{\mathcal{A}}^{[-\ell \ldots r)} \). We say Φ is bipermutative if it is both left- and right‐permutative. More generally, if \( { {\mathbb{M}} } \) is any monoid, \( { \mathbb{H}\subset{\mathbb{M}} } \) is any neighborhood, and \( { \textsf{h}\in\mathbb{H} } \) is any fixed coordinate, then we define h?permutativity for a CA on \( { \mathcal{A}^{\mathbb{M}} } \) in the obvious fashion.

For example, suppose \( { ({\mathcal{A}},+) } \) is an abelian group and Φ is an affine CA on \( { \mathcal{A}^{\mathbb{Z}} } \) with local rule \( \phi({\mathbf{a}}_\mathbb{H}) = c + \sum_{h=-\ell}^r \varphi_h(a_h) \). Then Φ is left‐permutative iff \( { \varphi_{-\ell} } \) is an automorphism, and right‐permutative iff \( { \varphi_r } \) is an automorphism. If \( { {\mathcal{A}}=\mathbb{Z}_{/p} } \), and p is prime, then every nontrivial endomorphism is an automorphism(because it is multiplication by a nonzero element of \( { \mathbb{Z}_{/p} } \), which is a field), so in this case, every affine CA is permutative in every coordinate of its neighborhood (and in particular, bipermutative). If \( { {\mathcal{A}}\neq\mathbb{Z}_{/p} } \), however, then not all affine CA are permutative.

Permutative CA were introduced by Hedlund [58], §6, and are sometimes called permutive CA. Right permutative CA on \( \smash{ \mathcal{A}^{\mathbb{N}} } \) are also called toggle automata . For more information, see Sect. 7 of Topological Dynamics of Cellular Automata.

Subshifts :

A subshift is a closed, σ?invariant subset \( \mathbf{X}\subset\mathcal{A}^{\mathbb{M}} \). For any \( \smash{ \mathbb{U}\subset{\mathbb{M}} } \), let \( \smash{\mathbf{X}}_{\mathbb{U}} := {\{{\mathbf{x}}_{\mathbb{U}}; {\mathbf{x}}\in{\mathbf{X}}\} }\subset {\mathcal{A}}^{\mathbb{U}} \). We say \( \smash{ {\mathbf{X}} } \) is a  subshift of finite type (SFT) if there is some finite \( \smash{ {\mathbb{U}}\subset{\mathbb{M}} } \) such that \( \smash{ {\mathbf{X}} } \) is entirely described by \( \smash{ {\mathbf{X}}_{\mathbb{U}} } \), in the sense that \( \smash{\mathbf{X}}={\{{\mathbf{x}}\in\mathcal{A}^{\mathbb{M}} ; {\mathbf{x}}_{{\mathbb{U}}+{\textsf{ m}}}\in{\mathbf{X}}_{\mathbb{U}}, \forall{\textsf{m}}\in{\mathbb{M}}\}} \).

In particular, if \( \smash{ {\mathbb{M}}=\mathbb{Z} } \), then a (two-sided) Markov subshift is an SFT \( \smash{ {\mathbf{X}}\subset\mathcal{A}^{\mathbb{Z}} } \) determined by a set \( \smash{ {\mathbf{X}}_{\{0,1\}}\subset{\mathcal{ A}}^{\{0,1\}} } \) of admissible transitions ; equivalently, \( \smash{ {\mathbf{X}} } \) is the set of all bi-infinite directed paths in a digraph whose vertices are the elements of \( \smash{ {\mathcal{A}} } \), with an edge \( \smash{ a\leadsto b } \) iff \( \smash{ (a,b)\in{\mathbf{X}}_{\{0,1\}} } \). If \( \smash{ {\mathbb{M}}=\mathbb{N} } \), then a  one-sided Markov subshift is a subshift of \( \smash{ \mathcal{A}^{\mathbb{N}} } \) defined in the same way.

If \( \smash{ D\geq 2 } \), then an SFT in \( \smash{ \mathcal{A}^{\mathbb{Z}^D} } \) can be thought of as the set of admissible ‘tilings’ of \( \smash{ \mathbb{R} } \) D by Wang tiles corresponding to the elements of \( \smash{ {\mathbf{X}}_{\mathbb{U}} } \). (Wang tiles are unit squares (or (hyper)cubes) with various ‘notches’ cut into their edges (or (hyper)faces) so that they can only be juxtaposed in certain ways.)

A subshift \( \smash{ {\mathbf{X}}\subseteq\mathcal{A}^{\mathbb{Z}^D} } \) is strongly irreducible (or topologically mixing ) if there is some \( \smash{ R\in\mathbb{N} } \) such that, for any disjoint finite subsets \( \smash{ {\mathbb{V}},{\mathbb{U}}\subset\mathbb{Z}^D } \) separated by a distance of at least R, and for any \( \smash{ {\mathbf{u}}\in{\mathbf{X}}_{\mathbb{U}} } \) and \( \smash{ {\mathbf{v}}\in{\mathbf{ X}}_{\mathbb{V}} } \), there is some \( \smash{ {\mathbf{x}}\in{\mathbf{X}} } \) such that \( \smash{ {\mathbf{ x}}_{\mathbb{U}}={\mathbf{u}} } \) and \( \smash{ {\mathbf{x}}_{\mathbb{V}}={\mathbf{v}} } \).

Measures :

For any finite subset \( \smash{ {\mathbb{U}}\subset{\mathbb{M}} } \), and any \( \smash{ {\mathbf{b}}\in{\mathcal{A}}^{\mathbb{U}} } \), let \( \smash{ \langle{\mathbf{b}}\rangle := {\{{\mathbf{a}}\in\mathcal{A}^{\mathbb{M}} ; {\mathbf{a}}_{\mathbb{U}}:={\mathbf{b}}\} } } \) be the cylinder set determined by \( \smash{ {\mathbf{b}} } \). Let \( \smash{ {\mathfrak{B}} } \) be the sigma-algebra on \( \smash{ \mathcal{A}^{\mathbb{M}} } \) generated by all cylinder sets. A (probability) measure μ on \( \smash{ \mathcal{A}^{\mathbb{M}} } \) is a countably additive function \( \smash{ \mu\colon{\mathfrak{ B}}{\longrightarrow}[0,1] } \) such that \( \smash{ \mu[\mathcal{A}^{\mathbb{M}}]=1 } \). A measure on \( \smash{ \mathcal{A}^{\mathbb{M}} } \) is entirely determined by its values on cylinder sets. We will be mainly concerned with the following classes of measures:

Bernoulli measure :

Let \( { \beta_0 } \) be a probability measure on \( { {\mathcal{A}} } \). The Bernoulli measure induced by \( { \beta_0 } \) is the measure β on \( { \mathcal{A}^{\mathbb{M}} } \) such that, for any finite subset \( { {\mathbb{U}}\subset{\mathbb{M}} } \), and any \( { {\mathbf{a}}\in{\mathcal{A}}^{\mathbb{U}} } \), if \( { U:=|{\mathbb{U}}| } \), then \( { \beta[\langle{\mathbf{a}}\rangle] = \prod_{\textsf{h}\in\mathbb{H}} \beta_0(a_{\textsf{h}}) } \).

Invariant measure :

Let μ be a measure on \( { \mathcal{A}^{\mathbb{M}} } \), and let \( { \Phi\colon\mathcal{A}^{\mathbb{M}}{\longrightarrow}\mathcal{A}^{\mathbb{M}} } \) be a cellular automaton. The measure \( { \Phi\mu } \) is defined by \( { \Phi\mu ({\mathbf{B}}) = \mu(\Phi^{-1}({\mathbf{B}})) } \), for any \( { {\mathbf{B}}\in{\mathfrak{B}} } \). We say that μ is Φ?invariant (or that Φ is μ?preserving ) if \( { \Phi\mu = \mu } \).

Uniform measure :

Let \( { A:=|{\mathcal{A}}| } \). The uniform measure η on \( { \mathcal{A}^{\mathbb{M}} } \) is the Bernoulli measure such that, for any finite subset \( { {\mathbb{U}}\subset{\mathbb{M}} } \), and any \( { {\mathbf{b}}\in{\mathcal{A}}^{\mathbb{U}} } \), if \( { U:=|{\mathbb{U}}| } \), then \( { \mu[\langle{\mathbf{b}}\rangle] = 1/A^U } \).

The support of a measure μ is the smallest closed subset \( { \mathbf{X}\subset\mathcal{A}^{\mathbb{M}} } \) such that \( { \mu[{\mathbf{X}}]=1 } \); we denote this by supp(μ). We say μ has full support if \( \textsf{supp}(\mu)=\mathcal{A}^{\mathbb{M}} \) – equivalently, \( { \mu[{\mathbf{C}}] > 0 } \) for every cylinder subset \( { {\mathbf{C}}\subset\mathcal{A}^{\mathbb{M}} } \).

Bernoulli measure :

Let \( { \beta_0 } \) be a probability measure on \( { {\mathcal{A}} } \). The Bernoulli measure induced by \( { \beta_0 } \) is the measure β on \( { \mathcal{A}^{\mathbb{M}} } \) such that, for any finite subset \( { {\mathbb{U}}\subset{\mathbb{M}} } \), and any \( { {\mathbf{a}}\in{\mathcal{A}}^{\mathbb{U}} } \), if \( { U:=|{\mathbb{U}}| } \), then \( { \beta[\langle{\mathbf{a}}\rangle] = \prod_{\textsf{h}\in\mathbb{H}} \beta_0(a_{\textsf{h}}) } \).

Invariant measure :

Let μ be a measure on \( { \mathcal{A}^{\mathbb{M}} } \), and let \( { \Phi\colon\mathcal{A}^{\mathbb{M}}{\longrightarrow}\mathcal{A}^{\mathbb{M}} } \) be a cellular automaton. The measure \( { \Phi\mu } \) is defined by \( { \Phi\mu ({\mathbf{B}}) = \mu(\Phi^{-1}({\mathbf{B}})) } \), for any \( { {\mathbf{B}}\in{\mathfrak{B}} } \). We say that μ is Φ?invariant (or that Φ is μ?preserving ) if \( { \Phi\mu = \mu } \).

Uniform measure :

Let \( { A:=|{\mathcal{A}}| } \). The uniform measure η on \( { \mathcal{A}^{\mathbb{M}} } \) is the Bernoulli measure such that, for any finite subset \( { {\mathbb{U}}\subset{\mathbb{M}} } \), and any \( { {\mathbf{b}}\in{\mathcal{A}}^{\mathbb{U}} } \), if \( { U:=|{\mathbb{U}}| } \), then \( { \mu[\langle{\mathbf{b}}\rangle] = 1/A^U } \).

Notation :

Let \( { {\textsf{C\!A}(\mathcal{A}^{\mathbb{M}})} } \) denote the set of all cellular automata on \( { \mathcal{A}^{\mathbb{M}} } \). If \( { {\mathbf{X}}\subset\mathcal{A}^{\mathbb{M}} } \), then let \( { {\textsf{C\!A}(\mathbf{X})} } \) be the subset of all \( { \Phi\in{\textsf{C\!A}(\mathcal{A}^{\mathbb{M}})} } \) such that \( { \Phi({\mathbf{X}})\subseteq{\mathbf{X}} } \). Let \( { \mathfrak{M\scriptscriptstyle{\!e\!a\!s}}(\mathcal{A}^{\mathbb{M}}) } \) be the set of all probability measures on \( { \mathcal{A}^{\mathbb{M}} } \), and let \( { \mathfrak{M\scriptscriptstyle{\!e\!a\!s}}(\mathcal{A}^{\mathbb{M}};\Phi) } \) be the subset of Φ?invariant measures. If \( { {\mathbf{X}}\subset\mathcal{A}^{\mathbb{M}} } \), then let \( { \mathfrak{M\scriptscriptstyle{\!e\!a\!s}}({\mathbf{X}}) } \) be the set of probability measures μ with \( { {\textsf{supp}}(\mu)\subseteq{\mathbf{X}} } \), and define \( { \mathfrak{M\scriptscriptstyle{\!e\!a\!s}}({\mathbf{X}};\Phi) } \) in the obvious way.

Font conventions :

Upper case calligraphic letters (\( { {\mathcal{A}},{\mathcal{B}},{\mathcal{C}},\ldots } \)) denote finite alphabets or groups. Upper-case bold letters (\( { {\mathbf{A}},{\mathbf{B}},{\mathbf{C}},\ldots } \)) denote subsets of \( { \mathcal{A}^{\mathbb{M}} } \) (e.?g. subshifts), lowercase bold-faced letters (\( { {\mathbf{a}},{\mathbf{b}},{\mathbf{c}},\ldots } \)) denote elements of \( { \mathcal{A}^{\mathbb{M}} } \), and Roman letters (\( { a,b,c,\ldots } \)) are elements of \( { {\mathcal{A}} } \) or ordinary numbers. Lower-case sans-serif (\( { \ldots,{\textsf{m}},{\textsf{n}},{\textsf{p}} } \)) are elements of \( { {\mathbb{M}} } \), upper-case hollow font (\( { {\mathbb{U}},{\mathbb{V}},{\mathbb{W}},\ldots } \)) are subsets of \( { {\mathbb{M}} } \). Upper-case Greek letters (\( { \Phi,\Psi,\ldots } \)) are functions on \( { \mathcal{A}^{\mathbb{M}} } \) (e.?g. CA, block maps), and lower-case Greek letters (\( { \phi,\psi,\ldots } \)) are other functions (e.?g. local rules, measures.)

Acronyms in square brackets (e.?g. Topological Dynamics of Cellular Automata) indicate cross‐references to related entries in the Encyclopedia; these are listed at the end of this article.

Bibliography

  1. Akin E (1993) The general topology of dynamical systems, Graduate Studies inMathematics, vol 1. American Mathematical Society, Providence

    Google Scholar 

  2. Allouche JP (1999) Cellular automata, finite automata, and number theory. In:Cellular automata (Saissac, 1996), Math. Appl., vol 460. Kluwer, Dordrecht, pp 321–330

    Google Scholar 

  3. Allouche JP, Skordev G (2003) Remarks on permutive cellular automata. J ComputSyst Sci 67(1):174–182

    MathSciNet  MATH  Google Scholar 

  4. Allouche JP, von Haeseler F, Peitgen HO, Skordev G (1996) Linear cellularautomata, finite automata and Pascal's triangle. Discret Appl Math 66(1):1–22

    MATH  Google Scholar 

  5. Allouche JP, von Haeseler F, Peitgen HO, Petersen A, Skordev G (1997)Automaticity of double sequences generated by one‐dimensional linear cellular automata. Theoret Comput Sci188(1-2):195–209

    MathSciNet  MATH  Google Scholar 

  6. Barbé A, von Haeseler F, Peitgen HO, Skordev G (1995) Coarse‐graininginvariant patterns of one‐dimensional two-state linear cellular automata. Internat J Bifur Chaos Appl Sci Eng5(6):1611–1631

    Google Scholar 

  7. Barbé A, von Haeseler F, Peitgen HO, Skordev G (2003) Rescaled evolutionsets of linear cellular automata on a cylinder. Internat J Bifur Chaos Appl Sci Eng 13(4):815–842

    Google Scholar 

  8. Belitsky V, Ferrari PA (2005) Invariant measures and convergence properties forcellular automaton 184 and related processes. J Stat Phys 118(3-4):589–623

    MathSciNet  MATH  Google Scholar 

  9. Blanchard F, Maass A (1997) Dynamical properties of expansive one-sided cellularautomata. Israel J Math 99:149–174

    MathSciNet  MATH  Google Scholar 

  10. Blank M (2003) Ergodic properties of a simple deterministic traffic flowmodel. J Stat Phys 111(3-4):903–930

    MathSciNet  MATH  Google Scholar 

  11. Boccara N, Naser J, Roger M (1991) Particle-like structures and theirinteractions in spatiotemporal patterns generated by one‐dimensional deterministic cellular automata. Phys Rev A44(2):866–875

    Google Scholar 

  12. Boyle M, Lind D (1997) Expansive subdynamics. Trans Amer Math Soc349(1):55–102

    MathSciNet  MATH  Google Scholar 

  13. Boyle M, Fiebig D, Fiebig UR (1997) A dimension group for localhomeomorphisms and endomorphisms of onesided shifts of finite type. J Reine Angew Math 487:27–59

    MathSciNet  MATH  Google Scholar 

  14. Burton R, Steif JE (1994) Non‐uniqueness of measures of maximal entropyfor subshifts of finite type. Ergodic Theory Dynam Syst 14(2):213–235

    MathSciNet  MATH  Google Scholar 

  15. Burton R, Steif JE (1995) New results on measures of maximal entropy. Israel JMath 89(1-3):275–300

    MathSciNet  MATH  Google Scholar 

  16. Cai H, Luo X (1993) Laws of large numbers for a cellular automaton. AnnProbab 21(3):1413–1426

    MathSciNet  MATH  Google Scholar 

  17. Cattaneo G, Formenti E, Manzini G, Margara L (1997) On ergodic linear cellularautomata over Z m . In: STACS 97 (Lübeck). Lecture Notesin Computer Science, vol 1200. Springer, Berlin, pp 427–438

    Google Scholar 

  18. Cattaneo G, Formenti E, Manzini G, Margara L (2000) Ergodicity, transitivity,and regularity for linear cellular automata over Z m . TheoretComput Sci 233(1-2):147–164

    MathSciNet  MATH  Google Scholar 

  19. Ceccherini‐Silberstein T, Fiorenzi F, Scarabotti F (2004) The Garden ofEden theorem for cellular automata and for symbolic dynamical systems. In: Random walks and geometry, de Gruyter, Berlin, pp73–108

    Google Scholar 

  20. Ceccherini‐Silberstein TG, Machì A, Scarabotti F (1999) Amenablegroups and cellular automata. Ann Inst Fourier (Grenoble) 49(2):673–685

    Google Scholar 

  21. Courbage M, Kamiński B (2002) On the directional entropy of\( { \mathbb{Z}^2 } \)?actions generatedby cellular automata. Studia Math 153(3):285–295

    Google Scholar 

  22. Courbage M, Kamiński B (2006) Space-time directional Lyapunov exponentsfor cellular automata. J Stat Phys 124(6):1499–1509

    Google Scholar 

  23. Coven EM (1980) Topological entropy of block maps. Proc Amer Math Soc78(4):590–594

    MathSciNet  MATH  Google Scholar 

  24. Coven EM, Paul ME (1974) Endomorphisms of irreducible subshifts of finitetype. Math Syst Theory 8(2):167–175

    MathSciNet  Google Scholar 

  25. Downarowicz T (1997) The royal couple conceals their mutual relationship:a noncoalescent Toeplitz flow. Israel J Math 97:239–251

    MathSciNet  MATH  Google Scholar 

  26. Durrett R, Steif JE (1991) Some rigorous results for theGreenberg–Hastings model. J Theoret Probab 4(4):669–690

    MathSciNet  MATH  Google Scholar 

  27. Durrett R, Steif JE (1993) Fixation results for threshold voter systems. AnnProbab 21(1):232–247

    MathSciNet  MATH  Google Scholar 

  28. Einsiedler M (2004) Invariant subsets and invariant measures for irreducibleactions on zero‐dimensional groups. Bull London Math Soc 36(3):321–331

    MathSciNet  MATH  Google Scholar 

  29. Einsiedler M (2005) Isomorphism and measure rigidity for algebraic actions onzero‐dimensional groups. Monatsh Math 144(1):39–69

    MathSciNet  MATH  Google Scholar 

  30. Einsiedler M, Lind D (2004) Algebraic \( { \mathbb{Z} } \) d?actions on entropy rank one. Trans Amer Math Soc 356(5):1799–1831(electronic)

    Google Scholar 

  31. Einsiedler M, Rindler H (2001) Algebraic actions of the discrete Heisenberg group and other non?abelian groups. Aequationes Math 62(1–2):117–135

    MathSciNet  MATH  Google Scholar 

  32. Einsiedler M, Ward T (2005) Entropy geometry and disjointness forzero‐dimensional algebraic actions. J Reine Angew Math 584:195–214

    MathSciNet  MATH  Google Scholar 

  33. Einsiedler M, Lind D, Miles R, Ward T (2001) Expansive subdynamics foralgebraic \( { \mathbb{Z} }\) d?actions. Ergodic Theory Dynam Systems21(6):1695–1729

    MathSciNet  MATH  Google Scholar 

  34. Eloranta K, Nummelin E (1992) The kink of cellular automaton Rule 18 performsa random walk. J Stat Phys 69(5-6):1131–1136

    MathSciNet  MATH  Google Scholar 

  35. Fagnani F, Margara L (1998) Expansivity, permutivity, and chaos for cellularautomata. Theory Comput Syst 31(6):663–677

    MathSciNet  MATH  Google Scholar 

  36. Ferrari PA, Maass A, Martínez S, Ney P (2000) Cesàro meandistribution of group automata starting from measures with summable decay. Ergodic Theory Dynam Syst 20(6):1657–1670

    Google Scholar 

  37. Finelli M, Manzini G, Margara L (1998) Lyapunov exponents versus expansivityand sensitivity in cellular automata. J Complexity 14(2):210–233

    MathSciNet  MATH  Google Scholar 

  38. Fiorenzi F (2000) The Garden of Eden theorem for sofic shifts. Pure Math Appl11(3):471–484

    MathSciNet  MATH  Google Scholar 

  39. Fiorenzi F (2003) Cellular automata and strongly irreducible shifts of finitetype. Theoret Comput Sci 299(1-3):477–493

    MathSciNet  MATH  Google Scholar 

  40. Fiorenzi F (2004) Semi-strongly irreducible shifts. Adv Appl Math32(3):421–438

    MathSciNet  MATH  Google Scholar 

  41. Fisch R (1990) The one‐dimensional cyclic cellular automaton:a system with deterministic dynamics that emulates an interacting particle system with stochastic dynamics. J Theoret Probab3(2):311–338

    MathSciNet  MATH  Google Scholar 

  42. Fisch R (1992) Clustering in the one‐dimensional three-color cycliccellular automaton. Ann Probab 20(3):1528–1548

    MathSciNet  MATH  Google Scholar 

  43. Fisch R, Gravner J (1995) One‐dimensional deterministicGreenberg–Hastings models. Complex Systems 9(5):329–348

    MathSciNet  MATH  Google Scholar 

  44. Furstenberg H (1967) Disjointness in ergodic theory, minimal sets, anda problem in Diophantine approximation. Math Systems Theory 1:1–49

    MathSciNet  MATH  Google Scholar 

  45. Gilman RH (1987) Classes of linear automata. Ergodic Theory Dynam Syst7(1):105–118

    MathSciNet  MATH  Google Scholar 

  46. Gottschalk W (1973) Some general dynamical notions. In: Recent advances intopological dynamics (Proc Conf Topological Dynamics, Yale Univ, New Haven, 1972; in honor of Gustav Arnold Hedlund), Lecture Notes in Math, vol 318. Springer, Berlin, pp120–125

    Google Scholar 

  47. Grassberger P (1984) Chaos and diffusion in deterministic cellularautomata. Phys D 10(1-2):52–58, cellular automata (Los Alamos, 1983)

    MathSciNet  Google Scholar 

  48. Grassberger P (1984) New mechanism for deterministic diffusion. Phys Rev A28(6):3666–3667

    Google Scholar 

  49. Grigorchuk RI (1984) Degrees of growth of finitely generated groups and thetheory of invariant means. Izv Akad Nauk SSSR Ser Mat 48(5):939–985

    MathSciNet  Google Scholar 

  50. Gromov M (1981) Groups of polynomial growth and expanding maps. Inst HautesÉtudes Sci Publ Math 53:53–73

    MathSciNet  MATH  Google Scholar 

  51. Gromov M (1999) Endomorphisms of symbolic algebraic varieties. J Eur Math Soc(JEMS) 1(2):109–197

    MathSciNet  MATH  Google Scholar 

  52. von Haeseler F, Peitgen HO, Skordev G (1992) Pascal's triangle, dynamicalsystems and attractors. Ergodic Theory Dynam Systems 12(3):479–486

    MathSciNet  MATH  Google Scholar 

  53. von Haeseler F, Peitgen HO, Skordev G (1993) Cellular automata, matrixsubstitutions and fractals. Ann Math Artificial Intelligence 8(3-4):345–362, theorem proving and logic programming(1992)

    MathSciNet  MATH  Google Scholar 

  54. von Haeseler F, Peitgen HO, Skordev G (1995) Global analysis ofself‐similarity features of cellular automata: selected examples. Phys D 86(1-2):64–80, chaos, order and patterns: aspects ofnonlinearity– the “gran finale” (Como, 1993)

    MathSciNet  Google Scholar 

  55. von Haeseler F, Peitgen HO, Skordev G (1995) Multifractal decompositions ofrescaled evolution sets of equivariant cellular automata. Random Comput Dynam 3(1-2):93–119

    MathSciNet  MATH  Google Scholar 

  56. von Haeseler F, Peitgen HO, Skordev G (2001) Self-similar structure of rescaledevolution sets of cellular automata. I. Internat J Bifur Chaos Appl Sci Eng 11(4):913–926

    MathSciNet  MATH  Google Scholar 

  57. von Haeseler F, Peitgen HO, Skordev G (2001) Self-similar structure of rescaledevolution sets of cellular automata. II. Internat J Bifur Chaos Appl Sci Eng 11(4):927–941

    MathSciNet  MATH  Google Scholar 

  58. Hedlund GA (1969) Endormorphisms and automorphisms of the shift dynamicalsystem. Math Syst Theory 3:320–375

    MathSciNet  MATH  Google Scholar 

  59. Hilmy H (1936) Sur les centres d'attraction minimaux des systeémesdynamiques. Compositio Mathematica 3:227–238

    MathSciNet  MATH  Google Scholar 

  60. Host B (1995) Nombres normaux, entropie, translations. Israel J Math91(1-3):419–428

    MathSciNet  MATH  Google Scholar 

  61. Host B, Maass A, Martìnez S (2003) Uniform Bernoulli measure in dynamicsof permutative cellular automata with algebraic local rules. Discret Contin Dyn Syst 9(6):1423–1446

    Google Scholar 

  62. Hurd LP, Kari J, Culik K (1992) The topological entropy of cellular automata isuncomputable. Ergodic Theory Dynam Syst 12(2):255–265

    MathSciNet  MATH  Google Scholar 

  63. Hurley M (1990) Attractors in cellular automata. Ergodic Theory Dynam Syst10(1):131–140

    MathSciNet  MATH  Google Scholar 

  64. Hurley M (1990) Ergodic aspects of cellular automata. Ergodic Theory Dynam Syst10(4):671–685

    MathSciNet  Google Scholar 

  65. Hurley M (1991) Varieties of periodic attractor in cellular automata. TransAmer Math Soc 326(2):701–726

    MathSciNet  MATH  Google Scholar 

  66. Hurley M (1992) Attractors in restricted cellular automata. Proc Amer Math Soc115(2):563–571

    MathSciNet  MATH  Google Scholar 

  67. Jen E (1988) Linear cellular automata and recurring sequences in finitefields. Comm Math Phys 119(1):13–28

    MathSciNet  Google Scholar 

  68. Johnson A, Rudolph DJ (1995) Convergence under \( { \times_q } \) of \( { \times_p } \) invariant measures on the circle. Adv Math115(1):117–140

    MathSciNet  MATH  Google Scholar 

  69. Johnson ASA (1992) Measures on the circle invariant under multiplication bya nonlacunary subsemigroup of the integers. Israel J Math 77(1-2):211–240

    MathSciNet  MATH  Google Scholar 

  70. Kitchens B (2000) Dynamics of \( { mathbf{Z}^d } \) actions on Markov subgroups. In: Topics in symbolic dynamics andapplications (Temuco, 1997), London Math Soc Lecture Note Ser, vol 279. Cambridge Univ Press, Cambridge, pp 89–122

    Google Scholar 

  71. Kitchens B, Schmidt K (1989) Automorphisms of compact groups. Ergodic TheoryDynam Syst 9(4):691–735

    MathSciNet  MATH  Google Scholar 

  72. Kitchens B, Schmidt K (1992) Markov subgroups of \( { (\mathbf{Z}/2\mathbf{Z})^{\mathbf{Z}^2} } \). In: Symbolicdynamics and its applications (New Haven, 1991), Contemp Math, vol 135. Amer Math Soc, Providence, pp 265–283

    Google Scholar 

  73. Kitchens BP (1987) Expansive dynamics on zero‐dimensional groups. ErgodicTheory Dynam Syst 7(2):249–261

    MathSciNet  MATH  Google Scholar 

  74. Kleveland R (1997) Mixing properties of one‐dimensional cellularautomata. Proc Amer Math Soc 125(6):1755–1766

    MathSciNet  MATH  Google Scholar 

  75. Kůrka P (1997) Languages, equicontinuity and attractors in cellularautomata. Ergodic Theory Dynam Systems 17(2):417–433

    Google Scholar 

  76. Kůrka P (2001) Topological dynamics of cellular automata. In: Codes,systems, and graphical models (Minneapolis, 1999), IMA vol Math Appl, vol 123. Springer, New York, pp 447–485

    Google Scholar 

  77. Kůrka P (2003) Cellular automata with vanishing particles. Fund Inform58(3-4):203–221

    Google Scholar 

  78. Kůrka P (2005) On the measure attractor of a cellularautomaton. Discret Contin Dyn Syst (suppl.):524–535

    Google Scholar 

  79. Kůrka P, Maass A (2000) Limit sets of cellular automata associated toprobability measures. J Stat Phys 100(5-6):1031–1047

    Google Scholar 

  80. Kůrka P, Maass A (2002) Stability of subshifts in cellular automata. FundInform 52(1-3):143–155, special issue on cellular automata

    Google Scholar 

  81. Lind D, Marcus B (1995) An introduction to symbolic dynamics and coding.Cambridge University Press, Cambridge

    MATH  Google Scholar 

  82. Lind DA (1984) Applications of ergodic theory and sofic systems to cellularautomata. Phys D 10(1-2):36–44, cellular automata (Los Alamos, 1983)

    MathSciNet  Google Scholar 

  83. Lind DA (1987) Entropies of automorphisms of a topological Markovshift. Proc Amer Math Soc 99(3):589–595

    MathSciNet  MATH  Google Scholar 

  84. Lucas E (1878) Sur les congruences des nombres eulériens et lescoefficients différentiels des functions trigonométriques suivant un module premier. Bull Soc Math France6:49–54

    MathSciNet  MATH  Google Scholar 

  85. Lyons R (1988) On measures simultaneously 2- and 3?invariant. Israel JMath 61(2):219–224

    MathSciNet  MATH  Google Scholar 

  86. Maass A (1996) Some dynamical properties of one‐dimensional cellularautomata. In: Dynamics of complex interacting systems (Santiago, 1994), Nonlinear Phenom. Complex Systems, vol 2. Kluwer, Dordrecht, pp35–80

    Google Scholar 

  87. Maass A, Martínez S (1998) On Cesàro limit distribution ofa class of permutative cellular automata. J Stat Phys 90(1–2):435–452

    Google Scholar 

  88. Maass A, Martínez S (1999) Time averages for some classes of expansiveone‐dimensional cellular automata. In: Cellular automata and complex systems (Santiago, 1996), Nonlinear Phenom. Complex Systems, vol 3. Kluwer, Dordrecht, pp 37–54

    Google Scholar 

  89. Maass A, Martínez S, Pivato M, Yassawi R (2006) Asymptotic randomizationof subgroup shifts by linear cellular automata. Ergodic Theory Dynam Syst 26(4):1203–1224

    Google Scholar 

  90. Maass A, Martínez S, Pivato M, Yassawi R (2006) Attractiveness of the Haarmeasure for the action of linear cellular automata in abelian topological Markov chains. In: Dynamics and Stochastics: Festschrift in honour of MichaelKeane, vol 48 of, Lecture Notes Monograph Series of the IMS, vol 48. Institute for Mathematical Statistics, Beachwood, pp 100–108

    Google Scholar 

  91. Maass A, Martínez S, Sobottka M (2006) Limit measures for affine cellularautomata on topological Markov subgroups. Nonlinearity 19(9):2137–2147,http://stacks.iop.org/0951-7715/19/2137

    Google Scholar 

  92. Machì A, Mignosi F (1993) Garden of Eden configurations for cellularautomata on Cayley graphs of groups. SIAM J Discret Math 6(1):44–56

    Google Scholar 

  93. Maruoka A, Kimura M (1976) Condition for injectivity of global maps fortessellation automata. Inform Control 32(2):158–162

    MathSciNet  MATH  Google Scholar 

  94. Mauldin RD, Skordev G (2000) Random linear cellular automata: fractalsassociated with random multiplication of polynomials. Japan J Math (NS) 26(2):381–406

    MathSciNet  MATH  Google Scholar 

  95. Meester R, Steif JE (2001) Higher‐dimensional subshifts of finite type,factor maps and measures of maximal entropy. Pacific J Math 200(2):497–510

    MathSciNet  MATH  Google Scholar 

  96. Milnor J (1985) Correction and remarks: “On the concept ofattractor”. Comm Math Phys 102(3):517–519

    MathSciNet  MATH  Google Scholar 

  97. Milnor J (1985) On the concept of attractor. Comm Math Phys99(2):177–195

    MathSciNet  MATH  Google Scholar 

  98. Milnor J (1986) Directional entropies of cellular automaton-maps. In:Disordered systems and biological organization (Les Houches, 1985), NATO Adv Sci Inst Ser F Comput Syst Sci, vol 20. Springer, Berlin, pp113–115

    Google Scholar 

  99. Milnor J (1988) On the entropy geometry of cellular automata. Complex Syst2(3):357–385

    MathSciNet  MATH  Google Scholar 

  100. Miyamoto M (1979) An equilibrium state for a one‐dimensional lifegame. J Math Kyoto Univ 19(3):525–540

    MathSciNet  MATH  Google Scholar 

  101. Moore C (1997) Quasilinear cellular automata. Phys D103(1–4):100–132, lattice dynamics (Paris, 1995)

    MathSciNet  MATH  Google Scholar 

  102. Moore C (1998) Predicting nonlinear cellular automata quickly by decomposingthem into linear ones. Phys D 111(1–4):27–41

    MathSciNet  MATH  Google Scholar 

  103. Moore EF (1963) Machine models of self reproduction. Proc Symp Appl Math14:17–34

    Google Scholar 

  104. Myhill J (1963) The converse of Moore's Garden-of-Eden theorem. Proc AmerMath Soc 14:685–686

    MathSciNet  MATH  Google Scholar 

  105. Nasu M (1995) Textile systems for endomorphisms and automorphisms of theshift. Mem Amer Math Soc 114(546):viii+215

    MathSciNet  Google Scholar 

  106. Nasu M (2002) The dynamics of expansive invertible onesided cellularautomata. Trans Amer Math Soc 354(10):4067–4084 (electronic)

    MathSciNet  MATH  Google Scholar 

  107. Park KK (1995) Continuity of directional entropy for a class of\( { \mathbf{Z}^2 } \)?actions. J KoreanMath Soc 32(3):573–582

    MathSciNet  MATH  Google Scholar 

  108. Park KK (1996) Entropy of a skew product with a \( { \mathbf{Z}^2 } \)?action. Pacific J Math172(1):227–241

    MathSciNet  MATH  Google Scholar 

  109. Park KK (1999) On directional entropy functions. Israel J Math113:243–267

    MathSciNet  MATH  Google Scholar 

  110. Parry W (1964) Intrinsic Markov chains. Trans Amer Math Soc112:55–66

    MathSciNet  MATH  Google Scholar 

  111. Pivato M (2003) Multiplicative cellular automata on nilpotent groups:structure, entropy, and asymptotics. J Stat Phys 110(1-2):247–267

    MathSciNet  MATH  Google Scholar 

  112. Pivato M (2005) Cellular automata versus quasisturmian shifts. Ergodic TheoryDynam Syst 25(5):1583–1632

    MathSciNet  MATH  Google Scholar 

  113. Pivato M (2005) Invariant measures for bipermutative cellularautomata. Discret Contin Dyn Syst 12(4):723–736

    MathSciNet  MATH  Google Scholar 

  114. Pivato M (2007) Spectral domain boundaries cellular automata. FundamentaInformaticae 77(special issue), available at: http://arxiv.org/abs/math.DS/0507091

  115. Pivato M (2008) Module shifts and measure rigidity in linear cellular automata. Ergodic Theory Dynam Syst (to appear)

    Google Scholar 

  116. Pivato M, Yassawi R (2002) Limit measures for affine cellularautomata. Ergodic Theory Dynam Syst 22(4):1269–1287

    MathSciNet  MATH  Google Scholar 

  117. Pivato M, Yassawi R (2004) Limit measures for affine cellularautomata. II. Ergodic Theory Dynam Syst 24(6):1961–1980

    MathSciNet  MATH  Google Scholar 

  118. Pivato M, Yassawi R (2006) Asymptotic randomization of sofic shifts by linearcellular automata. Ergodic Theory Dynam Syst 26(4):1177–1201

    MathSciNet  MATH  Google Scholar 

  119. Rudolph DJ (1990) \( { \times 2 } \) and \({ \times 3 } \) invariant measures and entropy. Ergodic Theory Dynam Syst10(2):395–406

    MathSciNet  MATH  Google Scholar 

  120. Sablik M (2006) Étude de l'action conjointe d'un automate cellulaire etdu décalage: Une approche topologique et ergodique. Ph?D thesis, Université de la Méditerranée, Faculté des science de Luminy,Marseille

    Google Scholar 

  121. Sablik M (2008) Directional dynamics for cellular automata:A sensitivity to initial conditions approach. submitted to Theor Comput Sci 400(1–3):1–18

    MathSciNet  MATH  Google Scholar 

  122. Sablik M (2008) Measure rigidity for algebraic bipermutative cellularautomata. Ergodic Theory Dynam Syst 27(6):1965–1990

    MathSciNet  Google Scholar 

  123. Sato T (1997) Ergodicity of linear cellular automata over \( { \mathbf{Z}_m } \). Inform Process Lett61(3):169–172

    MathSciNet  MATH  Google Scholar 

  124. Schmidt K (1995) Dynamical systems of algebraic origin, Progress inMathematics, vol 128. Birkhäuser, Basel

    MATH  Google Scholar 

  125. Shereshevsky MA (1992) Ergodic properties of certain surjective cellularautomata. Monatsh Math 114(3-4):305–316

    MathSciNet  MATH  Google Scholar 

  126. Shereshevsky MA (1992) Lyapunov exponents for one‐dimensional cellularautomata. J Nonlinear Sci 2(1):1–8

    MathSciNet  MATH  Google Scholar 

  127. Shereshevsky MA (1993) Expansiveness, entropy and polynomial growth forgroups acting on subshifts by automorphisms. Indag Math (NS) 4(2):203–210

    MathSciNet  MATH  Google Scholar 

  128. Shereshevsky MA (1996) On continuous actions commuting with actions ofpositive entropy. Colloq Math 70(2):265–269

    MathSciNet  MATH  Google Scholar 

  129. Shereshevsky MA (1997) K?property of permutative cellularautomata. Indag Math (NS) 8(3):411–416

    MathSciNet  MATH  Google Scholar 

  130. Shereshevsky MA, Afra?movich VS (1992/93) Bipermutative cellularautomata are topologically conjugate to the one-sided Bernoulli shift. Random Comput Dynam 1(1):91–98

    Google Scholar 

  131. Shirvani M, Rogers TD (1991) On ergodic one‐dimensional cellularautomata. Comm Math Phys 136(3):599–605

    MathSciNet  MATH  Google Scholar 

  132. Silberger S (2005) Subshifts of the three dot system. Ergodic Theory DynamSyst 25(5):1673–1687

    MathSciNet  MATH  Google Scholar 

  133. Smillie J (1988) Properties of the directional entropy function for cellularautomata. In: Dynamical systems (College Park, 1986–87), Lecture Notes in Math, vol 1342. Springer, Berlin, pp689–705

    Google Scholar 

  134. Sobottka M (2005) Representación y aleatorización en sistemasdinámicos de tipo algebraico. Ph?D thesis, Universidad de Chile, Facultad de ciencias físicas y matemáticas,Santiago

    Google Scholar 

  135. Sobottka M (2007) Topological quasi-group shifts. Discret Continuous Dyn Syst17(1):77–93

    MathSciNet  MATH  Google Scholar 

  136. Sobottka M (to appear 2007) Right‐permutative cellular automata ontopological Markov chains. Discret Continuous Dyn Syst. Available at http://arxiv.org/abs/math/0603326

  137. Steif JE (1994) The threshold voter automaton at a critical point. AnnProbab 22(3):1121–1139

    MathSciNet  MATH  Google Scholar 

  138. Takahashi S (1990) Cellular automata and multifractals: dimension spectra oflinear cellular automata. Phys D 45(1–3):36–48, cellular automata: theory and experiment (Los Alamos, NM, 1989)

    MathSciNet  MATH  Google Scholar 

  139. Takahashi S (1992) Self‐similarity of linear cellular automata. J Comput Syst Sci 44(1):114–140

    MATH  Google Scholar 

  140. Takahashi S (1993) Cellular automata, fractals and multifractals: space-timepatterns and dimension spectra of linear cellular automata. In: Chaos in Australia (Sydney, 1990), World Sci Publishing, River Edge, pp173–195

    Google Scholar 

  141. Tisseur P (2000) Cellular automata and Lyapunov exponents. Nonlinearity13(5):1547–1560

    MathSciNet  MATH  Google Scholar 

  142. Walters P (1982) An introduction to ergodic theory, Graduate Texts inMathematics, vol 79. Springer, New York

    MATH  Google Scholar 

  143. Weiss B (2000) Sofic groups and dynamical systems. Sankhyā Ser A62(3):350–359

    MATH  Google Scholar 

  144. Willson SJ (1975) On the ergodic theory of cellular automata. Math SystTheory 9(2):132–141

    MathSciNet  MATH  Google Scholar 

  145. Willson SJ (1984) Cellular automata can generate fractals. Discret Appl Math8(1):91–99

    MathSciNet  MATH  Google Scholar 

  146. Willson SJ (1984) Growth rates and fractional dimensions in cellularautomata. Phys D 10(1-2):69–74, cellular automata (Los Alamos, 1983)

    MathSciNet  Google Scholar 

  147. Willson SJ (1986) A use of cellular automata to obtain families offractals. In: Chaotic dynamics and fractals (Atlanta, 1985), Notes Rep Math Sci Eng, vol 2. Academic Press, Orlando, pp123–140

    Google Scholar 

  148. Willson SJ (1987) Computing fractal dimensions for additive cellularautomata. Phys D 24(1-3):190–206

    MathSciNet  MATH  Google Scholar 

  149. Willson SJ (1987) The equality of fractional dimensions for certain cellularautomata. Phys D 24(1-3):179–189

    MathSciNet  MATH  Google Scholar 

  150. Wolfram S (1985) Twenty problems in the theory of cellular automata. PhysicaScripta 9:1–35

    MathSciNet  Google Scholar 

  151. Wolfram S (1986) Theory and Applications of Cellular Automata. WorldScientific, Singapore

    MATH  Google Scholar 

Download references

Acknowledgments

I would like to thank François Blanchard, Mike Boyle, Maurice Courbage, Doug Lind, Petr Kůrka, Servet Martínez, Kyewon Koh Park,Mathieu Sablik, Jeffrey Steif, and Marcelo Sobottka, who read draft versions of this article and made many invaluable suggestions, corrections, andcomments. (Any errors which remain are mine.) To Reem.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Pivato, M. (2012). Ergodic Theory of Cellular Automata. In: Meyers, R. (eds) Computational Complexity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1800-9_62

Download citation

Publish with us

Policies and ethics