Computational Complexity

2012 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Data-Mining and Knowledge Discovery: Case-Based Reasoning, Nearest Neighbor and Rough Sets

  • Lech Polkowski
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-1800-9_50

Article Outline

Glossary

Definition of the Subject

Introduction

Rough Set Theory: Extensions

Rough Set Theory: Applications

Nearest Neighbor Method

Case-Based Reasoning

Complexity Issues

Future Directions

Bibliography

Keywords

Decision Rule Boolean Function Voronoi Diagram Decision System Neighbor Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

Primary Literature

  1. 1.
    Aamodt A (1991) A knowledge intensive approach to problem solving and sustained learning. Dissertation, University Trondheim, Norway. University Microfilms PUB 92–08460Google Scholar
  2. 2.
    Aamodt A, Plaza E (1994) Case-based reasoning: Foundational issues, methodological variations, and system approaches. AI Communications 7:39–59Google Scholar
  3. 3.
    Aggarwal CC, Hinneburg A, Keim DA (2001) On the surprising behavior of distance metrics in high dimensional space. In: Proceedings of the eighth international conference on database theory, London, pp 420–434Google Scholar
  4. 4.
    Aha DW (1998) The omnipresence of case-based reasoning in science and applications.Knowl-Based Syst 11:261–273CrossRefGoogle Scholar
  5. 5.
    Bayes T (1763) An essay towards solving a problem in the doctrine of chances. Philos Trans R Soc (London) 53:370–418Google Scholar
  6. 6.
    Bazan JG (1998) A comparison of dynamic and non‐dynamic rough set methods for extracting laws from decision tables. In: Polkowski L, Skowron A (eds) Rough sets in knowledge discovery, vol 1. Physica, Heidelberg, pp 321–365Google Scholar
  7. 7.
    Bazan JG et al (2000) Rough set algorithms in classification problems. In: Polkowski L, Tsumoto S, Lin TY (eds) Rough set methods and applications. New developments in knowledge discovery in information systems. Physica, Heidelberg, pp 49–88CrossRefGoogle Scholar
  8. 8.
    Bentley JL (1975) Multidimensional binary search trees used for associative searching.Commun ACM 18:509–517MATHCrossRefGoogle Scholar
  9. 9.
    Berchtold S, Keim D, Kriegel HP (1996) The X-tree: an index structure for high dimensional data. In: Proceedings of the 22nd International Conference on Very Large Databases VLDB'96 1996 Mumbai, Morgan Kaufmann, San Francisco, pp 29–36Google Scholar
  10. 10.
    Brin S (1995) Near neighbor search in large metric spaces. In: Proceedings of the 21st International Conference on Very Large Databases VLDB'95 Zurich, Morgan Kaufmann, San Francisco, pp 574–584Google Scholar
  11. 11.
    Ciaccia P, Patella M, Zezula P (1997) M-tree: an efficient access method for similarity search in metric spaces. In: Proceedings of the 23rd International Conference on Very Large Databases VLDB'97, Athens, Morgan Kaufmann, San Francisco, pp 426–435Google Scholar
  12. 12.
    Clark P, Evans F (1954) Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35:445–453CrossRefGoogle Scholar
  13. 13.
    Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory IT-13(1):21–27CrossRefGoogle Scholar
  14. 14.
    Czyżewski A et al (2004) Musical phrase representation and recognition by means of neural networks and rough sets. In: Transactions on rough sets, vol 1. Lecture Notes in Computer Science, vol 3100. Springer, Berlin, pp 254–278Google Scholar
  15. 15.
    Deja R (2000) Conflict analysis. In: Polkowski L, Tsumoto S, Lin TY (eds) Rough set methods and applications. New developments in knowledge discovery in information systems. Physica, Heidelberg, pp 491–520CrossRefGoogle Scholar
  16. 16.
    Duda RO, Hart PE, Stork DG (2001) Pattern classification. Wiley, New YorkMATHGoogle Scholar
  17. 17.
    Düntsch I, Gediga G (1998) GROBIAN. In: Polkowski L, Skowron A (eds) Rough sets in knowledge discovery 2. Physica, Heidelberg, pp 555–557Google Scholar
  18. 18.
    Faucett WM (1955) Compact semigroups irreducibly connected between two idempotents.Proc Am Math Soc 6:741–747MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Fernandez‐Baizan MC et al (1998) RSDM: Rough sets data miner. A system to add data mining capabilities to RDBMS. In: Polkowski L, Skowron A (eds) Rough sets in knowledge discovery 2. Physica, Heidelberg, pp 558–561Google Scholar
  20. 20.
    Finkel R, Bentley J (1974) Quad trees: a data structure for retrieval and composite keys. Acta Inf 4:1–9MATHCrossRefGoogle Scholar
  21. 21.
    Fix E, Hodges JL Jr (1951) Discriminatory analysis: Nonparametric discrimination: Consistency properties. USAF Sch Aviat Med 4:261–279Google Scholar
  22. 22.
    Fix E, Hodges JL Jr (1952) Discriminatory analysis: Nonparametric discrimination: Small sample performance. USAF Sch Aviat Med 11:280–322Google Scholar
  23. 23.
    Frege G (1903) Grundlagen der Arithmetik II. Jena, Hermann PohleGoogle Scholar
  24. 24.
    Fukunaga K, Narendra PM (1975) A branch and bound algorithm for computing k‑nearest neighbors. IEEE Trans Comput 24:750–753MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Gabriel KR, Sokal RR (1969) A new statistical approach to geographic variation analysis. Syst Zool 18:259–278CrossRefGoogle Scholar
  26. 26.
    Greco S, Matarazzo B, Słowiński R (1999) On joint use of indiscernibility, similarity and dominance in rough approximation of decision classes. In: Proceedings of the 5th international conference of the decision sciences institute, Athens, Greece, pp 1380–1382Google Scholar
  27. 27.
    Grzymala‐Busse JW (1992) LERS – a system for learning from examples based on rough sets.In: Słowiński R (ed) Intelligent decision support. Handbook of Advances and Applications of the Rough Sets Theory.Kluwer, Dordrecht, pp 3–18Google Scholar
  28. 28.
    Grzymala‐Busse JW (2004) Data with missing attribute values: Generalization of indiscernibility relation and rule induction. In: Transactions on rough sets, vol 1. Lecture Notes in Computer Science, vol 3100. Springer, Berlin, pp 78–95Google Scholar
  29. 29.
    Grzymala‐Busse JW, Ming H (2000) A comparison of several approaches to missing attribute values in data mining. In: Lecture notes in AI, vol 2005. Springer, Berlin, pp 378–385Google Scholar
  30. 30.
    Hart PE (1968) The condensed nearest neighbor rule. IEEE Trans Inf Theory IT-14(3):515–516CrossRefGoogle Scholar
  31. 31.
    Hastie T, Tibshirani R (1996) Discriminant adaptive nearest‐neighbor classification.IEEE Pattern Recognit Mach Intell 18:607–616CrossRefGoogle Scholar
  32. 32.
    Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning.Springer, New YorkMATHGoogle Scholar
  33. 33.
    Kalantari I, McDonald G (1983) A data structure and an algorithm for the nearest point problem. IEEE Trans Softw Eng 9:631–634MATHCrossRefGoogle Scholar
  34. 34.
    Katayama N, Satoh S (1997) The SR-tree: an index structure for high dimensional nearest neighbor queries. In: Proceedings of the 1997 ACM SIGMOD international conference on management of data, Tucson, AZ, pp 369–380Google Scholar
  35. 35.
    Klee V (1980) On the complexity of d‑dimensional Voronoi diagrams. Arch Math 34:75–80MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Klösgen W, Żytkow J (eds) (2002) Handbook of data mining and knowledge discovery. Oxford University Press, OxfordGoogle Scholar
  37. 37.
    Kolodner JL (1983) Maintaining organization in a dynamic long-term memory. Cogn Sci 7:243–80CrossRefGoogle Scholar
  38. 38.
    Kolodner JL (1993) Case-based reasoning. Morgan Kaufmann, San MateoGoogle Scholar
  39. 39.
    Komorowski J, Skowron A et al (1998) The ROSETTA software system. In: Polkowski L, Skowron A (eds) Rough sets in knowledge discovery 2. Physica, Heidelberg, pp 572–575Google Scholar
  40. 40.
    Kostek B (2007) The domain of acoustics seen from the rough set perspective. In: Transactions on rough sets, vol VI. Lecture Notes in Computer Science, vol 4374. Springer, Berlin, pp 133–151CrossRefGoogle Scholar
  41. 41.
    Koton P (1989) Using experience in learning and problem solving. Ph D Dissertation MIT/LCS/TR-441, MIT, Laboratory of Computer Science, CambridgeGoogle Scholar
  42. 42.
    Kowalczyk W (1998) TRANCE: A tool for rough data analysis, classification and clustering. In: Polkowski L, Skowron A (eds) Rough sets in knowledge discovery 2. Physica, Heidelberg, pp 566–568Google Scholar
  43. 43.
    Krawiec K et al (1998) Learning decision rules from similarity based rough approximations. In: Polkowski L, Skowron A (eds) Rough sets in knowledge discovery, vol 2.Physica, Heidelberg, pp 37–54CrossRefGoogle Scholar
  44. 44.
    Leśniewski S (1916) Podstawy Ogólnej Teoryi Mnogosci (On the Foundations of Set Theory), in Polish. The Polish Scientific Circle, Moscow; see also a later digest: (1982) Topoi 2:7–52Google Scholar
  45. 45.
    Lin KI, Jagadish HV, Faloustos C (1994) The TV-tree: an index structure for high dimensional data. VLDB J 3:517–542CrossRefGoogle Scholar
  46. 46.
    Lin TY (1997) From rough sets and neighborhood systems to information granulation and computing with words. In: 5th European Congress on Intelligent Techniques and Soft Computing, 1997 Aachen, Verlagshaus Mainz, Aachen, pp 1602–1606Google Scholar
  47. 47.
    Lin TY (2005) Granular computing: Examples, intuitions, and modeling. In: Proceedings of IEEE 2005 conference on granular computing GrC05, Beijing, China. IEEE Press, pp 40–44, IEEE Press, New YorkGoogle Scholar
  48. 48.
    Ling C-H (1965) Representation of associative functions. Publ Math Debrecen 12:189–212MathSciNetGoogle Scholar
  49. 49.
    Michalski RS et al (1986) The multi‐purpose incremental learning system AQ15 and its testing to three medical domains. In: Proceedings of AAAI-86. Morgan Kaufmann, San Mateo, pp 1041–1045Google Scholar
  50. 50.
    Mostert PS, Shields AL (1957) On the structure of semigroups on a compact manifold with a boundary. Ann Math 65:117–143MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Nguyen SH (1997) Discretization of real valued attributes: Boolean reasoning approach.Ph D Dissertation, Warsaw University, Department of Mathematics, Computer Science and MechanicsGoogle Scholar
  52. 52.
    Nguyen SH, Skowron A (1995) Quantization of real valued attributes: Rough set and Boolean reasoning approach. In: Proceedings 2nd annual joint conference on information sciences, Wrightsville Beach, NC, pp 34–37Google Scholar
  53. 53.
    Nguyen SH (2000) Regularity analysis and its applications in Data Mining. In: Polkowski L, Tsumoto S, Lin TY (eds) Rough set methods and applications. New developments in knowledge discovery in information systems. Physica, Heidelberg, pp 289–378CrossRefGoogle Scholar
  54. 54.
    Nguyen TT (2004) Handwritten digit recognition using adaptive classifier construction techniques. In: Pal SK, Polkowski L, Skowron A (eds) Rough – neural computing. Techniques for computing with words. Springer, Berlin, pp 573–586CrossRefGoogle Scholar
  55. 55.
    Novotny M, Pawlak Z (1988) Partial dependency of attributes. Bull Pol Acad Ser Sci Math 36:453–458MathSciNetMATHGoogle Scholar
  56. 56.
    Novotny M, Pawlak Z (1992) On a problem concerning dependence spaces. Fundam Inform 16:275–287MathSciNetMATHGoogle Scholar
  57. 57.
    Pal SK, Dasgupta B, Mitra P (2004) Rough-SOM with fuzzy discretization. In: Pal SK, Polkowski L, Skowron A (eds) Rough – neural computing. Techniques for computing with words.Springer, Berlin, pp 351–372CrossRefGoogle Scholar
  58. 58.
    Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33(3):128–152MathSciNetCrossRefGoogle Scholar
  59. 59.
    Patrick EA, Fisher FP (1970) A generalized k‑nearest neighbor rule. Inf Control 16(2):128–152MATHCrossRefGoogle Scholar
  60. 60.
    Pawlak Z (1982) Rough sets. Int J Comput Inf Sci 11:341–356MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Pawlak Z (1985) On rough dependency of attributes in information systems. Bull Pol Acad Ser Sci Tech 33:551–559MathSciNetMATHGoogle Scholar
  62. 62.
    Pawlak Z (1991) Rough sets: theoretical aspects of reasoning about data. Kluwer, DordrechtMATHGoogle Scholar
  63. 63.
    Pawlak Z, Skowron, A (1993) A rough set approach for decision rules generation. In: Proceedings of IJCAI'93 workshop W12. The management of uncertainty in AI. also: ICS Research Report 23/93 Warsaw University of TechnologyGoogle Scholar
  64. 64.
    Pawlak Z, Skowron A (1994) Rough membership functions. In: Yaeger RR, Fedrizzi M, Kasprzyk J (eds) Advances in the Dempster–Schafer theory of evidence. Wiley, New York, pp 251–271Google Scholar
  65. 65.
    Peters J, Ramanna S (2004) Approximation space for software models. In: Transactions on rough sets, vol I. Lecture Notes in Computer Science, vol 3100. Springer, Berlin, pp 338–355CrossRefGoogle Scholar
  66. 66.
    Poincaré H (1902) Science et hypothese and I'Hypothese.Flammarion, ParisGoogle Scholar
  67. 67.
    Polkowski L (2003) A rough set paradigm for unifying rough set theory and fuzzy set theory. In: Proceedings RSFDGrC03, Chongqing, China, 2003. Lecture Notes in AI, vol 2639.Springer, Berlin, pp 70–78; also: Fundam Inf 54:67–88Google Scholar
  68. 68.
    Polkowski L (2004) Toward rough set foundations. Mereological approach. In: Proceedings RSCTC04, Uppsala, Sweden. Lecture Notes in AI, vol 3066. Springer, Berlin, pp 8–25Google Scholar
  69. 69.
    Polkowski L (2005) Formal granular calculi based on rough inclusions. In: Proceedings of IEEE 2005 conference on granular computing GrC05, Beijing, China. IEEE Press, New York, pp 57–62CrossRefGoogle Scholar
  70. 70.
    Polkowski L (2005) Rough-fuzzy‐neurocomputing based on rough mereological calculus of granules. Int J Hybrid Intell Syst 2:91–108MATHGoogle Scholar
  71. 71.
    Polkowski L (2006) A model of granular computing with applications. In: Proceedings of IEEE 2006 conference on granular computing GrC06, Atlanta, USA May 10-12. IEEE Press, New York, pp 9–16CrossRefGoogle Scholar
  72. 72.
    Polkowski L, Araszkiewicz B (2002) A rough set approach to estimating the game value and the Shapley value from data. Fundam Inf 53(3/4):335–343MathSciNetGoogle Scholar
  73. 73.
    Polkowski L, Artiemjew P (2007) On granular rough computing: Factoring classifiers through granular structures. In: Proceedings RSEISP'07, Warsaw. Lecture Notes in AI, vol 4585, pp 280–290Google Scholar
  74. 74.
    Polkowski L, Skowron A (1994) Rough mereology. In: Proceedings of ISMIS'94. Lecture notes in AI, vol 869. Springer, Berlin, pp 85–94Google Scholar
  75. 75.
    Polkowski L, Skowron A (1997) Rough mereology: a new paradigm for approximate reasoning. Int J Approx Reason 15(4):333–365MathSciNetCrossRefGoogle Scholar
  76. 76.
    Polkowski L, Skowron A (1999) Towards an adaptive calculus of granules. In: Zadeh LA, Kacprzyk J (eds) Computing with words in information/intelligent systems, vol 1. Physica, Heidelberg, pp 201–228CrossRefGoogle Scholar
  77. 77.
    Polkowski L, Skowron A, Żytkow J (1994) Tolerance based rough sets. In: Lin TY, Wildberger M (eds) Soft Computing: Rough sets, fuzzy logic, neural networks, uncertainty management, knowledge discovery. Simulation Councils Inc., San Diego, pp 55–58Google Scholar
  78. 78.
    Porter BW, Bareiss ER (1986) PROTOS: An experiment in knowledge acquisition for heuristic classification tasks. In: Proceedings of the first international meeting on advances in learning (IMAL), Les Arcs, France, pp 159–174Google Scholar
  79. 79.
    Preparata F, Shamos MI (1985) Computational geometry: an introduction. Springer, New YorkCrossRefGoogle Scholar
  80. 80.
    Rauszer C (1985) An equivalence between indiscernibility relations in information systems and a fragment of intuitionistic logic. Bull Pol Acad Ser Sci Math 33:571–579MathSciNetMATHGoogle Scholar
  81. 81.
    Ripley BD (1997) Pattern recognition and neural networks. Cambridge University Press, CambridgeGoogle Scholar
  82. 82.
    Skowron A et al (1994) A system for data analysis. http://logic.mimuw.edu.pl/~rses/
  83. 83.
    Schank RC (1982) Dynamic memory: A theory of reminding and learning in computers and people. Cambridge University Press, CambridgeGoogle Scholar
  84. 84.
    Schank RC, Abelson RP (1977) Scripts, plans, goals and understanding. Lawrence Erlbaum, HillsdaleMATHGoogle Scholar
  85. 85.
    Semeniuk‐Polkowska M (2007) On conjugate information systems: A proposition on how to learn concepts in humane sciences by means of rough set theory. In: Transactions on rough sets, vol VI. Lecture Notes in Computer Science, vol 4374. Springer, Berlin, pp 298–307Google Scholar
  86. 86.
    Simard P, Le Cun Y, Denker J (1993) Efficient pattern recognition using a new transformation distance. In: Hanson SJ, Cowan JD, Giles CL (eds) Advances in neural information processing systems, vol 5. Morgan Kaufmann, San Mateo, pp 50–58Google Scholar
  87. 87.
    Simpson RL (1985) A A computer model of case-based reasoning in problem solving: An investigation in the domain of dispute mediation. Georgia Institute of Technology, AtlantaGoogle Scholar
  88. 88.
    Skellam JG (1952) Studies in statistical ecology, I, Spatial pattern. Biometrica 39:346–362MATHGoogle Scholar
  89. 89.
    Skowron A (1993) Boolean reasoning for decision rules generation. In: Komorowski J, Ras Z (eds) Proceedings of ISMIS'93. Lecture Notes in AI, vol 689. Springer, Berlin, pp 295–305Google Scholar
  90. 90.
    Skowron A, Rauszer C (1992) The discernibility matrices and functions in decision systems.In: Słowiński R (ed) Intelligent decision support. Handbook of applications and advances of the rough sets theory. Kluwer, Dordrecht, pp 311–362Google Scholar
  91. 91.
    Skowron A, Stepaniuk J (1996) Tolerance approximation spaces. Fundam Inf 27:245–253MathSciNetMATHGoogle Scholar
  92. 92.
    Skowron A, Stepaniuk J (2001) Information granules: towards foundations of granular computing.Int J Intell Syst 16:57–85MATHCrossRefGoogle Scholar
  93. 93.
    Skowron A, Swiniarski RW (2004) Information granulation and pattern recognition. In: Pal SK, Polkowski L, Skowron A (eds), Rough – Neural Computing. Techniques for computing with words. Springer, Berlin, pp 599–636Google Scholar
  94. 94.
    Slezak D (2000) Various approaches to reasoning with frequency based decision reducts: a survey. In: Polkowski L, Tsumoto S, Lin TY (eds) Rough set methods and applications. New developments in knowledge discovery in information systems. Physica, Heidelberg, pp 235–288CrossRefGoogle Scholar
  95. 95.
    Słowiński R, Stefanowski J (1992) “RoughDAS” and “RoughClass” software implementations of the rough set approach. In: Słowiński R (ed) Intelligent decision support: Handbook of advances and applications of the rough sets theory. Kluwer, Dordrecht, pp 445–456Google Scholar
  96. 96.
    Słowiński R, Stefanowski J (1998) Rough family – software implementation of the rough set theory. In: Polkowski L, Skowron A (eds) Rough sets in knowledge discovery 2.Physica, Heidelberg, pp 580–586Google Scholar
  97. 97.
    Stanfill C, Waltz D (1986) Toward memory‐based reasoning. Commun ACM 29:1213–1228CrossRefGoogle Scholar
  98. 98.
    Mackie M (2006) Stanford encyclopedia of philosophy: Transworld identity http://plato.stanford.edu/entries/identity-transworld Accessed 6 Sept 2008
  99. 99.
    Stefanowski J (1998) On rough set based approaches to induction of decision rules. In: Polkowski L, Skowron A (eds) Rough sets in knowledge discovery 1. Physica, Heidelberg, pp 500–529Google Scholar
  100. 100.
    Stefanowski J (2007) On combined classifiers, rule induction and rough sets. In: Transactions on rough sets, vol VI. Lecture Notes in Computer Science, vol 4374. Springer, Berlin, pp 329–350CrossRefGoogle Scholar
  101. 101.
    Stepaniuk J (2000) Knowledge discovery by application of rough set models. In: Polkowski L, Tsumoto S, Lin TY (eds) Rough set methods and applications. New developments in knowledge discovery in information systems. Physica, Heidelberg, pp 138–233Google Scholar
  102. 102.
    Suraj Z (1998) TAS: Tools for analysis and synthesis of concurrent processes using rough set methods. In: Polkowski L, Skowron A (eds) Rough sets in knowledge discovery, vol 2.Physica, Heidelberg, pp 587–590Google Scholar
  103. 103.
    Suraj Z (2000) Rough set methods for the synthesis and analysis of concurrent processes. In: Polkowski L, Tsumoto S, Lin TY (eds) Rough set methods and applications. New developments in knowledge discovery in information systems. Physica, Heidelberg, pp 379–490CrossRefGoogle Scholar
  104. 104.
    Swiniarski RW (1998) RoughFuzzyLab: A system for data mining and rough and fuzzy sets based classification. In: Polkowski L, Skowron A (eds) Rough sets in knowledge discovery 2.Physica, Heidelberg, pp 591–593Google Scholar
  105. 105.
    Swiniarski RW, Skowron A (2004) Independent component analysis, principal component analysis and rough sets in face recognition. In: Transactions on rough sets, vol I. Lecture Notes in Computer Science, vol 3100. Springer, Berlin, pp 392–404CrossRefGoogle Scholar
  106. 106.
    Sycara EP (1987) Resolving adversial conflicts: An approach to integrating case-based and analytic methods. Georgia Institute of Technology, AtlantaGoogle Scholar
  107. 107.
    Toussaint GT (1980) The relative neighborhood graph of a finite planar set. Pattern Recognit 12(4):261–268MathSciNetMATHCrossRefGoogle Scholar
  108. 108.
    Tsumoto S (1998) PRIMEROSE. In: Polkowski L, Skowron A (eds) Rough sets in knowledge discovery 2. Physica, Heidelberg, pp 594–597Google Scholar
  109. 109.
    UCI Repository http://www.ics.uci.edu/mlearn/databases/ University of California, Irvine, Accessed 6 Sept 2008
  110. 110.
    Uhlmann J (1991) Satisfying general proximity/similarity queries with metric trees.Inf Process Lett 40:175–179MATHCrossRefGoogle Scholar
  111. 111.
    Veloso M (1994) Planning and learning by analogical reasoning. Springer, BerlinMATHCrossRefGoogle Scholar
  112. 112.
    Vitoria A (2005) A framework for reasoning with rough sets. In: Transactions on rough sets, vol IV. Lecture Notes in Computer Science, vol 3100. Springer, Berlin, pp 178–276CrossRefGoogle Scholar
  113. 113.
    Ward J (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244CrossRefGoogle Scholar
  114. 114.
    Watson I, Marir F (1994) Case-based reasoning: A review http://www.ai-cbr.org/classroom/cbr-review.html Accessed 6 Sept 2008; see also: Watson I (1994). Knowl Eng Rev 9(4):327–354
  115. 115.
    White DA, Jain R (1996) Similarity indexing with the SS-tree. In: Proceedings of the twelve international conference on data engineering, New Orleans LA, pp 516–523Google Scholar
  116. 116.
    Wilson DR, Martinez TR (1997) Improved heterogeneous distance functions. J Artif Intell Res 6:1–34MathSciNetMATHGoogle Scholar
  117. 117.
    Wittgenstein L (1953) Philosophical investigations. Blackwell, LondonGoogle Scholar
  118. 118.
    Wojdyłło P (2004) WaRS: A method for signal classification. In: Pal SK, Polkowski L, Skowron A (eds) Rough – neural computing. Techniques for computing with words. Springer, Berlin, pp 649–688Google Scholar
  119. 119.
    Wojna A (2005) Analogy‐based reasoning in classifier construction. In: Transactions on rough sets, vol IV. Lecture Notes in Computer Science, vol 3700. Springer, Berlin, pp 277–374CrossRefGoogle Scholar
  120. 120.
    Wróblewski J (1998) Covering with reducts – a fast algorithm for rule generation.In: Lecture notes in artificial intelligence, vol 1424. Springer, Berlin, pp 402–407Google Scholar
  121. 121.
    Wróblewski J (2004) Adaptive aspects of combining approximation spaces. In: Pal SK, Polkowski L, Skowron A (eds) Rough – neural computing. Techniques for computing with words.Springer, Berlin, pp 139–156Google Scholar
  122. 122.
    Yao YY (2000) Granular computing: Basic issues and possible solutions. In: Proceedings of the 5th Joint Conference on Information Sciences I. Assoc Intell Machinery, Atlantic NJ, pp 186–189Google Scholar
  123. 123.
    Yao YY (2005) Perspectives of granular computing. In: Proceedings of IEEE 2005 Conference on Granular Computing GrC05, Beijing, China. IEEE Press, New York, pp 85–90CrossRefGoogle Scholar
  124. 124.
    Zadeh LA (1979) Fuzzy sets and information granularity. In: Gupta M, Ragade R, Yaeger RR (eds) Advances in fuzzy set theory and applications. North‐Holland, Amsterdam, pp 3–18Google Scholar
  125. 125.
    Zeeman EC (1965) The topology of the brain and the visual perception. In: Fort MK (ed) Topology of 3‑manifolds and selected topics. Prentice Hall, Englewood Cliffs, pp 240–256Google Scholar
  126. 126.
    Ziarko W (1998) KDD-R: Rough set-based data mining system. In: Polkowski L, Skowron A (eds) Rough sets in knowledge discovery 2. Physica, Heidelberg, pp 598–601Google Scholar

Books and Reviews

  1. 127.
    Avis D, Bhattacharya BK (1983) Algorithms for computing d‑dimensional Voronoi diagrams and their duals. In: Preparata FP (ed) Advances in computing research: Computational geometry. JAI Press, Greenwich, pp 159–180Google Scholar
  2. 128.
    Bocheński JM (1954) Die Zeitgenössischen Denkmethoden. A. Francke, BernGoogle Scholar
  3. 129.
    Dasarathy BV (ed) (1991) Nearest neighbor (NN) norms: NN Pattern classification techniques. IEEE Computer Society, WashingtonGoogle Scholar
  4. 130.
    Friedman J (1994) Flexible metric nearest‐neighbor classification. Technical Report, Stanford UniversityGoogle Scholar
  5. 131.
    Polkowski L (2002) Rough sets. Mathematical foundations.Physica, HeidelbergMATHGoogle Scholar
  6. 132.
    Russell SJ, Norvig P (2003) Artificial intelligence. A modern approach, 2nd edn.Prentice Hall Pearson Education, Upper Saddle RiverGoogle Scholar
  7. 133.
    Toussaint GT, Bhattacharya BV, Poulsen RS (1984) Application of voronoi diagrams to nonparametric decision rules. In: Proceedings of Computer Science and Statistics: The Sixteenth Symposium on the Interface. North Holland, Amsterdam, pp 97–108Google Scholar
  8. 134.
    Watson I (1997) Applying case-based reasoning. Techniques for enterprise systems.Morgan Kaufmann, Elsevier, AmsterdamGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Lech Polkowski
    • 1
    • 2
  1. 1.Polish–Japanese Institute of Information TechnologyWarsawPoland
  2. 2.Department of Mathematics and Computer ScienceUniversity of Warmia and MazuryOlsztynPoland