Computational Complexity

2012 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Agent Based Modeling, Large Scale Simulations

  • Hazel R. Parry
Reference work entry

Article Outline


Definition of the Subject


Large Scale Agent Based Models: Guidelines for Development

Parallel Computing


Future Directions




Parallel Computing Agent Model Control Node Agent Platform Agent Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.



Many thanks to Andrew Evans (Multi-Agent Systems and Simulation Research Group, University of Leeds, UK) and Phil Northing (Central ScienceLaboratory, UK) for their advice on this chapter.


Primary Literature

  1. 1.
    Abbott CA, Berry MW, Comiskey EJ, Gross LJ, Luh H-K (1997) Parallel Individual-Based Modeling of Everglades Deer Ecology. IEEE Comput Sci Eng 4(4):60–78CrossRefGoogle Scholar
  2. 2.
    Anderson J (2000) A Generic Distributed Simulation System for Intelligent Agent Design and Evaluation. In: Proceedings of the AI, Simulation & Planning In High Autonomy Systems, ArizonaGoogle Scholar
  3. 3.
    Bokma A, Slade A, Kerridge S, Johnson K (1994) Engineering large-scale agent- based systems with consensus. Robot Comput-Integr Manuf 11(2):81–91CrossRefGoogle Scholar
  4. 4.
    Bouzid M, Chevrier V, Vialle S, Charpillet F (2001) Parallel simulation of a stochastic agent/environment interaction model. Integr Comput-Aided Eng 8(3):189–203Google Scholar
  5. 5.
    Castiglione F, Bernaschi M, Succi S (1997) Simulating the Immune Response on a Distributed Parallel Computer. Int J Mod Phys C 8(3):527–545CrossRefGoogle Scholar
  6. 6.
    Chalmers A, Tidmus J (1996) Practical Parallel Processing: An Introduction to Problem Solving in Parallel. International Thomson Computer Press, LondonGoogle Scholar
  7. 7.
    Da-Jun T, Tang F, Lee TA, Sarda D, Krishnan A, Goryachev A (2004) Parallel computing platform for the agent-based modeling of multicellular biological systems.In: Parallel and Distributed Computing: Applications and Technologies. Lecture Notes in Computer Science, vol 3320, pp 5–8Google Scholar
  8. 8.
    Fujimoto RM (1998) Time management in the high level architecture.Simul 71:388–400CrossRefGoogle Scholar
  9. 9.
    Gasser L, Kakugawa K (2002) MACE3J: Fast flexible distributed simulation of large, large-grain multi-agent systems. In: Proceedings of AAMASGoogle Scholar
  10. 10.
    Gasser L, Kakugawa K, Chee B, Esteva M (2005) Smooth scaling ahead: progressive MAS simulation from single PCs to Grids. In: Davidsson P, Logan B, Takadama K (eds) Multi-agent and multi-agent-based simulation. Joint Workshop MABS 2004 New York, NY, USA, July 19, 2004.Springer, BerlinGoogle Scholar
  11. 11.
    Gilbert N (2007) Agent-based Models (Quantitative applications in the social siences). SAGE, LondonGoogle Scholar
  12. 12.
    Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, Goss-Custard J, Grand T, Heinz S, Huse G, Huth A, Jepsen JU, Jorgensen C, Mooij WM, Muller B, Pe'er G, Piou C, Railsback SF, Robbins AM, Robbins MM, Rossmanith E, Ruger N, Strand E, Souissi S, Stillman RA, Vabo R, Visser U, DeAngelis DL (2006) A standard protocol for describing individual-based and agent-based models. Ecol Model 198(1–2):115–126CrossRefGoogle Scholar
  13. 13.
    Grimm V, Railsback SF (2005) Individual-based Modeling and Ecology. Princeton Series in Theoretical and Computational Biology. Princeton University Press, Princeton, 480 ppGoogle Scholar
  14. 14.
    Guessoum Z, Briot J-P, Faci N (2005) Towards fault-tolerant massively multiagent system. In: Ishida T, Gasser L, Nakashima H (eds) Massively Multi-Agent Systems I: First International Workshop MMAS 2004, Kyoto, Japan, December 2004. Springer, BerlinGoogle Scholar
  15. 15.
    Heppenstall AJ (2004) Application of Hybrid Intelligent Agents to Modelling a Dynamic, Locally Interacting Retail Market. Ph D thesis, University of Leeds, UKGoogle Scholar
  16. 16.
    Horling B, Lesser V (2005) Quantitative organizational models for large-scale agent systems. In: Ishida T, Gasser L, Nakashima H (eds) Massively Multi-Agent Systems I: First International Workshop MMAS 2004, Kyoto, Japan, December 2004. Springer, BerlinGoogle Scholar
  17. 17.
    Immanuel A, Berry MW, Gross LJ, Palmer M, Wang D (2005) A parallel implementation of ALFISH: simulating hydrological compartmentalization effects on fish dynamics in the Florida Everglades. Simul Model Pract Theory 13:55–76CrossRefGoogle Scholar
  18. 18.
    Ishida T, Gasser L, Nakashima H (eds) (2005) Massively Multi-Agent Systems I. First International Workshop, MMAS 2004, Kyoto, Japan. Springer, BerlinGoogle Scholar
  19. 19.
    Jang MW (2006) Agent framework services to reduce agent communication overhead in large-scale agent-based simulations. Simul Model Pract Theory 14(6):679–694CrossRefGoogle Scholar
  20. 20.
    Jang MW, Agha G (2005) Adaptive agent allocation for massively multi-agent applications. In: Ishida T, Gasser L, Nakashima H (eds) Massively Multi-Agent Systems I: First International Workshop MMAS 2004, Kyoto, Japan, December 2004. Springer, BerlinGoogle Scholar
  21. 21.
    Jennings NR (2000) On agent-based software engineering. Artif Intell 117:277–296zbMATHCrossRefGoogle Scholar
  22. 22.
    Kadau K, Germann TC, Lomdahl PS (2006) Molecular dynamics comes of age: 320 billion atom simulation on BlueGene/L. Int J Mod Phys C 17(12):1755CrossRefGoogle Scholar
  23. 23.
    Lees M, Logan B, Oguara T, Theodoropoulos G (2003) Simulating Agent-Based Systems with HLA: The case of SIM_AGENT – Part II. In: Proceedings of the 2003 European Simulation Interoperability WorkshopGoogle Scholar
  24. 24.
    Lees M, Logan B, Theodoropoulos G (2002) Simulating Agent-Based Systems with HLA: The case of SIM_AGENT. In: Proceedings of the 2002 European Simulation Interoperability Workshop, pp 285–293Google Scholar
  25. 25.
    Logan B, Theodoropolous G (2001) The Distributed Simulation of Multi-Agent Systems. Proc IEEE 89(2):174–185CrossRefGoogle Scholar
  26. 26.
    Lomdahl PS, Beazley DM, Tamayo P, Gronbechjensen N (1993) Multimillion particle molecular-dynamics on the CM-5. Int J Mod Phys C: Phys Comput 4(6):1075–1084CrossRefGoogle Scholar
  27. 27.
    Lorek H, Sonnenschein M (1995) Using parallel computers to simulate individual-oriented models in ecology: a case study. In: Proceedings: ESM '95 European Simulation Multiconference, Prague, June 1995Google Scholar
  28. 28.
    Luke S, Cioffi-Revilla C, Panait L, Sullivan K (2004) MASON: A New Multi-Agent Simulation Toolkit. In: Proceedings of the 2004 SwarmFest WorkshopGoogle Scholar
  29. 29.
    Openshaw S, Turton I (2000) High performance computing and the art of parallel programming: an introduction for geographers, social scientists, engineers. Routledge, LondonGoogle Scholar
  30. 30.
    Pacheco PS (1997) Parallel Programming with MPI. Morgan Kauffman Publishers, San FranciscozbMATHGoogle Scholar
  31. 31.
    Parry HR (2006) Effects of Land Management upon Species Population Dynamics: A Spatially Explicit, Individual-based Model. Ph D thesis, University of LeedsGoogle Scholar
  32. 32.
    Parry HR, Evans AJ (in press) A comparative analysis of parallel processing and super-individual methods for improving the computational performance of a large individual-based model. Ecological ModellingGoogle Scholar
  33. 33.
    Parry HR, Evans AJ, Heppenstall AJ (2006) Millions of Agents: Parallel Simulations with the Repast Agent-Based Toolkit. In: Trappl R (ed) Cybernetics and Systems 2006, Proceedings of the 18th European Meeting on Cybernetics and Systems ResearchGoogle Scholar
  34. 34.
    Popov K, Vlassov V, Rafea M, Holmgren F, Brand P, Haridi S (2003) Parallel agent-based simulation on a cluster of workstations. In: EURO-PAR 2003 Parallel Processing, vol 2790, pp 470–480Google Scholar
  35. 35.
    Scheffer M, Baveco JM, DeAngelis DL, Rose KA, van Nes EH (1995) Super-Individuals: a simple solution for modelling large populations on an individual basis. Ecol Model 80:161–170CrossRefGoogle Scholar
  36. 36.
    Scheutz M, Schermerhorn P (2006) Adaptive Algorithms for the Dynamic Distribution and Parallel Execution of Agent-Based Models. J Parallel Distrib Comput 66(8):1037–1051zbMATHCrossRefGoogle Scholar
  37. 37.
    Takahashi T, Mizuta H (2006) Efficient agent-based simulation framework for multi-node supercomputers. In: Perrone LF, Wieland FP, Liu J, Lawson BG, Nicol DM, Fujimoto RM (eds) Proceedings of the 2006 Winter Simulation ConferenceGoogle Scholar
  38. 38.
    Takeuchi I (2005) A massively multi-agent simulation system for disaster mitigation. In: Ishida T, Gasser L, Nakashima H (eds) Massively Multi-Agent Systems I: First International Workshop MMAS 2004, Kyoto, Japan, December 2004.Springer, BerlinGoogle Scholar
  39. 39.
    Timm IJ, Pawlaszczyk D (2005) Large Scale Multiagent Simulation on the Grid. In: Veit D, Schnizler B, Eymann T (eds) Proceedings of the Workshop on Agent-based grid Economics (AGE 2005) at the IEEE International Symposium on Cluster Computing and the Grid (CCGRID). Cardiff University, CardiffGoogle Scholar
  40. 40.
    Wang D, Berry MW, Carr EA, Gross LJ (2006a) A parallel fish landscape model for ecosystem modeling. Simul 82(7):451–465CrossRefGoogle Scholar
  41. 41.
    Wang D, Berry MW, Gross LJ (2006b) On parallelization of a spatially-explicit structured ecological model for integrated ecosystem simulation.Int J High Perform Comput Appl 20(4):571–581CrossRefGoogle Scholar
  42. 42.
    Wang D, Carr E, Gross LJ, Berry MW (2005a) Toward ecosystem modeling on computing grids. Comput Sci Eng 7:44–52CrossRefGoogle Scholar
  43. 43.
    Wang D, Gross L, Carr E, Berry M (2004) Design and implementation of a Parallel Fish Model for South Florida. In: Proceedings of the 37th Annual Hawaii International Conference on System Sciences (HICSS'04)Google Scholar
  44. 44.
    Wang F, Turner SJ, Wang L (2005b) Agent Communication in Distributed Simulations. In: Davidsson P, Logan B, Takadama K (eds) Multi-agent and multi-agent-based simulation. Joint Workshop MABS 2004 New York, NY, USA, July 19, 2004. Springer, BerlinGoogle Scholar
  45. 45.
    Wooldridge M (1999) Intelligent agents. In: Weiss G (ed) Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. MIT Press, Cambridge, pp 27–78Google Scholar
  46. 46.
    Zhang S, Lui J (2005) A massively multi-agent system for discovering HIV-immune interaction dynamics. In: Ishida T, Gasser L, Nakashima H (eds) Massively Multi-Agent Systems I: First International Workshop MMAS 2004, Kyoto, Japan, December 2004. Springer, BerlinGoogle Scholar
  47. 47.
    Zhang Y, Thedoropoulos G, Minson R, Turner SJ, Cai W, Xie Y, Logan B (2005) Grid-aware Large Scale Distributed Simulation of Agent-based Systems.In: 2004 European Simulation Interoperability Workshop (EuroSIW 2005), 05E-SIW-047, Toulouse, FranceGoogle Scholar

Books and Reviews

  1. 48.
    Agent libraries and toolkits with distributed or parallel features:Google Scholar
  2. 49.
    • Distributed GenSim: Supports distributed parallel execution [2].Google Scholar
  3. 50.
    • Ecolab: EcoLab models may also use the Graphcode library to implement a distributed network of agents over an MPI-based computer cluster.
  4. 51.
  5. 52.
    • MACE3J: an experimental agent platform supporting deployment of agent simulations across a variety of system architectures [9,10].
  6. 53.
    • MASON MASON was ‘not intended to include parallelization of a single simulation across multiple networked processors’ [28].However, it does provide two kinds of simple parallelization:
  7. 54.
    1. Any given step in the simulation can be broken into parallel sub-steps each performed simultaneously.Google Scholar
  8. 55.
    2. A simulation step can run asynchronously in the background independent of the simulation.Google Scholar
  9. 56.
    • Repast and HLA_GRID_Repast [47]. The Repast toolkit has in-built capabilities for performing batch simulation runs.
  10. 57.
    • SimAgent: Two developments support distributed versions of SimAgent:
  11. 58.
    1. The use of HLA to distribute SimAgent [23,24]Google Scholar
  12. 59.
    2. The SWAGES package: This allows SimAgent to be distributed over different computers and interfaced with other packages.
  13. 60.
    Message Passing Interfaces (MPI):Google Scholar
  14. 61.
    • Background and tutorials
  15. 62.
  16. 63.
    • MPI forum
  17. 64.
    • MPIJava
  18. 65.
    • OpenMP
  19. 66.
  20. 67.
    Parallel computing and distributed agent simulation websites:Google Scholar
  21. 68.
    • Further references and websites
  22. 69.
    • Introduction to parallel programming
  23. 70.
    • (implementations of HLA_GRID_Repast and distributed SimAgent).
  24. 71.
    • Globus Grid computing resources
  25. 72.
    • Beowulf computer clusters

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Hazel R. Parry
    • 1
  1. 1.Central Science LaboratoryYorkUK