Computational Complexity

2012 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

ComplexGene Regulatory Networks – from Structure to Biological Observables: Cell Fate Determination

  • Sui Huang
  • Stuart A. Kauffman
Reference work entry

Article Outline


Definition of the Subject


Overview: Studies of Networks in Systems Biology

Network Architecture

Network Dynamics

Cell Fates, Cell types: Terminology and Concepts

History of Explaning Cell Types

Boolean Networks as Model for Complex GRNs

Three Regimes of Behaviors for Boolean Networks

Experimental Evidence from Systems Biology

Future Directions and Questions



Gene Expression Profile Attractor State Boolean Function Network Architecture Boolean Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


Primary Literature

  1. 1.
    Adolfsson J, Mansson R, Buza-Vidas N, Hultquist A, Liuba K, Jensen CT, Bryder D, Yang L, Borge OJ, Thoren LA, Anderson K, Sitnicka E, Sasaki Y, Sigvardsson M, Jacobsen SE (2005) Identification of Flt3+ lympho‐myeloid stem cells lacking erythro‐megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121:295–306Google Scholar
  2. 2.
    Aittokallio T, Schwikowski B (2006) Graph-based methods for analysing networks in cell biology. Brief Bioinform 7:243–55Google Scholar
  3. 3.
    Albert R (2005) Scale-free networks in cell biology. J Cell Sci 118:4947–57Google Scholar
  4. 4.
    Albert R, Othmer HG (2003) The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J Theor Biol 223:1–18Google Scholar
  5. 5.
    Albert R, Jeong H, Barabasi AL (2000) Error and attack tolerance of complex networks. Nature 406:378–82Google Scholar
  6. 6.
    Aldana M, Cluzel P (2003) A natural class of robust networks. Proc Natl Acad Sci USA 100:8710–4Google Scholar
  7. 7.
    Aldana M, Balleza E, Kauffman S, Resendiz O (2007) Robustness and evolvability in genetic regulatory networks. J Theor Biol 245:433–48MathSciNetGoogle Scholar
  8. 8.
    Aldana M, Coppersmith S, Kadanoff LP (2003) Boolean dynamics with random couplings. In: Kaplan E, Marsden JE, Sreenivasan KR (eds) Perspectives and problems in nonlinear science.A celebratory volume in honor of Lawrence Sirovich. Springer, New YorkGoogle Scholar
  9. 9.
    Alon U (2003) Biological networks: the tinkerer as an engineer. Science 301:1866–7Google Scholar
  10. 10.
    Amaral LA, Scala A, Barthelemy M, Stanley HE (2000) Classes of small-world networks. Proc Natl Acad Sci USA 97:11149–52Google Scholar
  11. 11.
    Anderson PW (1972) More is different. Science 177:393–396 Google Scholar
  12. 12.
    Angeli D, Ferrell JE Jr., Sontag ED (2004) Detection of multistability, bifurcations, and hysteresis in a large class of biological positive‐feedback systems. Proc Natl Acad Sci USA 101:1822–1827Google Scholar
  13. 13.
    Arney KL, Fisher AG (2004) Epigenetic aspects of differentiation. J Cell Sci 117:4355–63Google Scholar
  14. 14.
    Artzy-Randrup Y, Fleishman SJ, Ben-Tal N, Stone L (2004) Comment on Network motifs: simple building blocks of complex networks and Superfamilies of evolved and designed networks. Science 305:1107; author reply 1107Google Scholar
  15. 15.
    Autumn K, Ryan MJ, Wake DB (2002) Integrating historical and mechanistic biology enhances the study of adaptation. Q Rev Biol 77:383–408Google Scholar
  16. 16.
    Babu MM, Luscombe NM, Aravind L, Gerstein M, Teichmann SA (2004) Structure and evolution of transcriptional regulatory networks. Curr Opin Struct Biol 14:283–91Google Scholar
  17. 17.
    Bagley RJ, Glass L (1996) Counting and classifying attractors in high dimensional dynamical systems. J Theor Biol 183:269–84Google Scholar
  18. 18.
    Balcan D, Kabakcioglu A, Mungan M, Erzan A (2007) The information coded in the yeast response elements accounts for most of the topological properties of its transcriptional regulation network. PLoS ONE 2:e501Google Scholar
  19. 19.
    Balleza E, Alvarez-Buylla ER, Chaos A, Kauffman A, Shmulevich I, Aldana M (2008) Critical dynamics in genetic regulatory networks: examples from four kingdoms. PLoS One 3:e2456Google Scholar
  20. 20.
    Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–12MathSciNetGoogle Scholar
  21. 21.
    Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113Google Scholar
  22. 22.
    Becskei A, Seraphin B, Serrano L (2001) Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. EMBO J 20:2528–2535Google Scholar
  23. 23.
    Berg J, Lassig M, Wagner A (2004) Structure and evolution of protein interaction networks: a statistical model for link dynamics and gene duplications. BMC Evol Biol 4:51Google Scholar
  24. 24.
    Bergmann S, Ihmels J, Barkai N (2004) Similarities and differences in genome‐wide expression data of six organisms. PLoS Biol 2:E9Google Scholar
  25. 25.
    Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–26Google Scholar
  26. 26.
    Bird A (2007) Perceptions of epigenetics. Nature 447:396–8Google Scholar
  27. 27.
    Bloom JD, Adami C (2003) Apparent dependence of protein evolutionary rate on number of interactions is linked to biases in protein–protein interactions data sets. BMC Evol Biol 3:21Google Scholar
  28. 28.
    Bloom JD, Adami C (2004) Evolutionary rate depends on number of protein–protein interactions independently of gene expression level: response. BMC Evol Biol 4:14Google Scholar
  29. 29.
    Bork P, Jensen LJ, von Mering C, Ramani AK, Lee I, Marcotte EM (2004) Protein interaction networks from yeast to human. Curr Opin Struct Biol 14:292–9Google Scholar
  30. 30.
    Bornholdt S (2005) Systems biology. Less is more in modeling large genetic networks.Science 310:449–51Google Scholar
  31. 31.
    Bornholdt S, Rohlf T (2000) Topological evolution of dynamical networks: global criticality from local dynamics. Phys Rev Lett 84:6114–7Google Scholar
  32. 32.
    Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–56Google Scholar
  33. 33.
    Brock A, Chang H, Huang SH Non‐genetic cell heterogeneity and mutation‐less tumor progression. Manuscript submittedGoogle Scholar
  34. 34.
    Brown KS, Hill CC, Calero GA, Myers CR, Lee KH, Sethna JP, Cerione RA (2004) The statistical mechanics of complex signaling networks: nerve growth factor signaling. Phys Biol 1:184–195Google Scholar
  35. 35.
    Bulyk ML (2006) DNA microarray technologies for measuring protein‐DNA interactions.Curr Opin Biotechnol 17:422–30Google Scholar
  36. 36.
    Callaway DS, Hopcroft JE, Kleinberg JM, Newman ME, Strogatz SH (2001) Are randomly grown graphs really random? Phys Rev E Stat Nonlin Soft Matter Phys 64:041902Google Scholar
  37. 37.
    Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S (2008) Transcriptome‐wide noise controls lineage choice in mammalian progenitor cells. Nature 453:544–547Google Scholar
  38. 38.
    Chang HH, Oh PY, Ingber DE, Huang S (2006) Multistable and multistep dynamics in neutrophil differentiation. BMC Cell Biol 7:11Google Scholar
  39. 39.
    Chang WC, Li CW, Chen BS (2005) Quantitative inference of dynamic regulatory pathways via microarray data. BMC Bioinformatics 6:44Google Scholar
  40. 40.
    Chaves M, Sontag ED, Albert R (2006) Methods of robustness analysis for Boolean models of gene control networks. Syst Biol (Stevenage) 153:154–67Google Scholar
  41. 41.
    Chen K, Rajewsky N (2007) The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 8:93–103Google Scholar
  42. 42.
    Chen KC, Wang TY, Tseng HH, Huang CY, Kao CY (2005) A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae.Bioinformatics 21:2883–90Google Scholar
  43. 43.
    Chickarmane V, Troein C, Nuber UA, Sauro HM, Peterson C (2006) Transcriptional dynamics of the embryonic stem cell switch. PLoS Comput Biol 2:e123Google Scholar
  44. 44.
    Claverie JM (2001) Gene number. What if there are only 30,000 human genes? Science 291:1255–7Google Scholar
  45. 45.
    Collins SJ (1987) The HL-60 promyelocytic leukemia cell line: proliferation, differentiation, and cellular oncogene expression. Blood 70:1233–1244Google Scholar
  46. 46.
    Cordero OX, Hogeweg P (2006) Feed‐forward loop circuits as a side effect of genome evolution. Mol Biol Evol 23:1931–6Google Scholar
  47. 47.
    Cross MA, Enver T (1997) The lineage commitment of haemopoietic progenitor cells. Curr Opin Genet Dev 7:609–613Google Scholar
  48. 48.
    Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F (2006) The c-Myc target gene network. Semin Cancer Biol 16:253–64Google Scholar
  49. 49.
    Davidich MI, Bornholdt S (2008) Boolean network model predicts cell cycle sequence of fission yeast. PLoS ONE 3:e1672Google Scholar
  50. 50.
    Davidson EH, Erwin DH (2006) Gene regulatory networks and the evolution of animal body plans. Science 311:796–800Google Scholar
  51. 51.
    de la Serna IL, Ohkawa Y, Berkes CA, Bergstrom DA, Dacwag CS, Tapscott SJ, Imbalzano AN (2005) MyoD targets chromatin remodeling complexes to the myogenin locus prior to forming a stable DNA-bound complex. Mol Cell Biol 25:3997–4009Google Scholar
  52. 52.
    Deane CM, Salwinski L, Xenarios I, Eisenberg D (2002) Protein interactions: two methods for assessment of the reliability of high throughput observations. Mol Cell Proteomics 1:349–56Google Scholar
  53. 53.
    Delbrück M (1949) Discussion. In: Unités biologiques douées de continuité génétique Colloques Internationaux du Centre National de la Recherche Scientifique. CNRS, ParisGoogle Scholar
  54. 54.
    Deplancke B, Mukhopadhyay A, Ao W, Elewa AM, Grove CA, Martinez NJ, Sequerra R, Doucette‐Stamm L, Reece-Hoyes JS, Hope IA, Tissenbaum HA, Mango SE, Walhout AJ (2006) A gene‐centered C. elegans protein‐DNA interaction network. Cell 125:1193–205Google Scholar
  55. 55.
    Derrida B, Pomeau Y (1986) Random networks of automata: a simple annealed approximation. Europhys Lett 1:45–49Google Scholar
  56. 56.
    Dodd IB, Micheelsen MA, Sneppen K, Thon G (2007) Theoretical analysis of epigenetic cell memory by nucleosome modification. Cell 129:813–22Google Scholar
  57. 57.
    Eichler GS, Huang S, Ingber DE (2003) Gene Expression Dynamics Inspector (GEDI): for integrative analysis of expression profiles.Bioinformatics 19:2321–2322Google Scholar
  58. 58.
    Eisenberg E, Levanon EY (2003) Preferential attachment in the protein network evolution. Phys Rev Lett 91:138701Google Scholar
  59. 59.
    Enver T, Heyworth CM, Dexter TM (1998) Do stem cells play dice?Blood 92:348–51; discussion 352Google Scholar
  60. 60.
    Espinosa-Soto C, Padilla‐Longoria P, Alvarez-Buylla ER (2004) A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. Plant Cell 16:2923–39Google Scholar
  61. 61.
    Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, Kasif S, Collins JJ, Gardner TS (2007) Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 5:e8Google Scholar
  62. 62.
    Faure A, Naldi A, Chaouiya C, Thieffry D (2006) Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle.Bioinformatics 22:e124–31Google Scholar
  63. 63.
    Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C, Bozzoni I (2005) A minicircuitry comprised of microRNA‐223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123:819–31Google Scholar
  64. 64.
    Ferrell JE Jr., Machleder EM (1998) The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science 280:895–8Google Scholar
  65. 65.
    Fisher AG (2002) Cellular identity and lineage choice. Nat Rev Immunol 2:977–82Google Scholar
  66. 66.
    Fox JJ, Hill CC (2001) From topology to dynamics in biochemical networks. Chaos 11:809–815MathSciNetzbMATHGoogle Scholar
  67. 67.
    Fraser HB, Hirsh AE (2004) Evolutionary rate depends on number of protein–protein interactions independently of gene expression level. BMC Evol Biol 4:13Google Scholar
  68. 68.
    Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW (2002) Evolutionary rate in the protein interaction network. Science 296:750–2Google Scholar
  69. 69.
    Fuks F (2005) DNA methylation and histone modifications: teaming up to silence genes.Curr Opin Genet Dev 15:490–495Google Scholar
  70. 70.
    Gao H, Falt S, Sandelin A, Gustafsson JA, Dahlman-Wright K (2007) Genome‐wide identification of estrogen receptor α binding sites in mouse liver. Mol Endocrinol 22:10–22Google Scholar
  71. 71.
    Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403:339–342Google Scholar
  72. 72.
    Gershenson C (2002) Classification of random Boolean networks. In: Standish RK, Bedau MA, Abbass HA (eds) Artificial life, vol 8. MIT Press, Cambridge, pp 1–8Google Scholar
  73. 73.
    Gisiger T (2001) Scale invariance in biology: coincidence or footprint of a universal mechanism? Biol Rev Camb Philos Soc 76:161–209Google Scholar
  74. 74.
    Glass L, Kauffman SA (1972) Co‐operative components, spatial localization and oscillatory cellular dynamics. J Theor Biol 34:219–37Google Scholar
  75. 75.
    Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635–8Google Scholar
  76. 76.
    Goldstein ML, Morris SA, Yen GG (2004) Problems with fitting to the power-law distribution. Eur Phys J B 41:255–258Google Scholar
  77. 77.
    Goodwin BC, Webster GC (1999) Rethinking the origin of species by natural selection.Riv Biol 92:464–7Google Scholar
  78. 78.
    Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B Biol Sci 205:581–98Google Scholar
  79. 79.
    Graf T (2002) Differentiation plasticity of hematopoietic cells. Blood 99:3089–101Google Scholar
  80. 80.
    Grass JA, Boyer ME, Pal S, Wu J, Weiss MJ, Bresnick EH (2003) GATA-1‑dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain‐wide chromatin remodeling. Proc Natl Acad Sci USA 100:8811–6Google Scholar
  81. 81.
    Greil F, Drossel B, Sattler J (2007) Critical Kauffman networks under deterministic asynchronous update. New J Phys 9:373Google Scholar
  82. 82.
    Guelzim N, Bottani S, Bourgine P, Kepes F (2002) Topological and causal structure of the yeast transcriptional regulatory network. Nat Genet 31:60–3Google Scholar
  83. 83.
    Guo Y, Eichler GS, Feng Y, Ingber DE, Huang S (2006) Towards a holistic, yet gene‐centered analysis of gene expression profiles: a case study of human lung cancers. J Biomed Biotechnol 2006:69141Google Scholar
  84. 84.
    Hahn MW, Kern AD (2005) Comparative genomics of centrality and essentiality in three eukaryotic protein‐interaction networks. Mol Biol Evol 22:803–6Google Scholar
  85. 85.
    Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47–52Google Scholar
  86. 86.
    Harris SE, Sawhill BK, Wuensche A, Kauffman SA (2002) A model of transcriptional regulatory networks based on biases in the observed regulation rules. Complexity 7:23–40Google Scholar
  87. 87.
    Hasty J, Pradines J, Dolnik M, Collins JJ (2000) Noise-based switches and amplifiers for gene expression. Proc Natl Acad Sci USA 97:2075–80Google Scholar
  88. 88.
    Haverty PM, Hansen U, Weng Z (2004) Computational inference of transcriptional regulatory networks from expression profiling and transcription factor binding site identification. Nucleic Acids Res 32:179–88Google Scholar
  89. 89.
    He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–31Google Scholar
  90. 90.
    Hilborn R (1994) Chaos and nonlinear dynamics: An introduction for scientists and engineers, 2 edn. Oxford University Press, New YorkGoogle Scholar
  91. 91.
    Hochedlinger K, Jaenisch R (2006) Nuclear reprogramming and pluripotency. Nature 441:1061–7Google Scholar
  92. 92.
    Hu M, Krause D, Greaves M, Sharkis S, Dexter M, Heyworth C, Enver T (1997) Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev 11:774–85Google Scholar
  93. 93.
    Huang S (2004) Back to the biology in systems biology: what can we learn from biomolecular networks. Brief Funct Genomics Proteomics 2:279–297Google Scholar
  94. 94.
    Huang S (2007) Cell fates as attractors – stability and flexibility of cellular phenotype. In: Endothelial biomedicine, 1st edn, Cambridge University Press, New York, pp 1761–1779Google Scholar
  95. 95.
    Huang S, Ingber DE (2000) Shape‐dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks. Exp Cell Res 261:91–103Google Scholar
  96. 96.
    Huang S, Ingber DE (2006) A non‐genetic basis for cancer progression and metastasis: self‐organizing attractors in cell regulatory networks.Breast Dis 26:27–54zbMATHGoogle Scholar
  97. 97.
    Huang S, Wikswo J (2006) Dimensions of systems biology. Rev Physiol Biochem Pharmacol 157:81–104Google Scholar
  98. 98.
    Huang S, Eichler G, Bar-Yam Y, Ingber DE (2005) Cell fates as high‐dimensional attractor states of a complex gene regulatory network. Phys Rev Lett 94:128701Google Scholar
  99. 99.
    Huang S, Guo YP, May G, Enver T (2007) Bifurcation dynamics of cell fate decision in bipotent progenitor cells. Dev Biol 305:695–713Google Scholar
  100. 100.
    Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour CD, Bennett HA, Coffey E, Dai H, He YD, Kidd MJ, King AM, Meyer MR, Slade D, Lum PY, Stepaniants SB, Shoemaker DD, Gachotte D, Chakraburtty K, Simon J, Bard M, Friend SH (2000) Functional discovery via a compendium of expression profiles. Cell 102:109–26Google Scholar
  101. 101.
    Hume DA (2000) Probability in transcriptional regulation and its implications for leukocyte differentiation and inducible gene expression.Blood 96:2323–8Google Scholar
  102. 102.
    Ihmels J, Bergmann S, Barkai N (2004) Defining transcription modules using large-scale gene expression data. Bioinformatics 20:1993–2003Google Scholar
  103. 103.
    Jablonka E, Lamb MJ (2002) The changing concept of epigenetics. Ann N Y Acad Sci 981:82–96Google Scholar
  104. 104.
    Jeong H, Mason SP, Barabasi AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41–42Google Scholar
  105. 105.
    Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome‐wide mapping of in vivo protein‐DNA interactions. Science 316:1497–502Google Scholar
  106. 106.
    Jordan IK, Wolf YI, Koonin EV (2003) No simple dependence between protein evolution rate and the number of protein–protein interactions: only the most prolific interactors tend to evolve slowly. BMC Evol Biol 3:1zbMATHGoogle Scholar
  107. 107.
    Joy MP, Brock A, Ingber DE, Huang S (2005) High‐betweenness proteins in the yeast protein interaction network. J Biomed Biotechnol 2005:96–103Google Scholar
  108. 108.
    Kaern M, Elston TC, Blake WJ, Collins JJ (2005) Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet 6:451–64Google Scholar
  109. 109.
    Kaplan D, Glass L (1995) Understanding Nonlinear Dynamics, 1st edn. Springer, New YorkzbMATHGoogle Scholar
  110. 110.
    Kashiwagi K, Urabe I, Kancko K, Yomo T (2006) Adaptive response of a gene network to environmental changes by fitness‐induced attractor selection. PLoS One, 1:e49Google Scholar
  111. 111.
    Kauffman S (1969) Homeostasis and differentiation in random genetic control networks. Nature 224:177–8Google Scholar
  112. 112.
    Kauffman S (2004) A proposal for using the ensemble approach to understand genetic regulatory networks. J Theor Biol 230:581–90MathSciNetGoogle Scholar
  113. 113.
    Kauffman S, Peterson C, Samuelsson B, Troein C (2003) Random Boolean network models and the yeast transcriptional network. Proc Natl Acad Sci USA 100:14796–9Google Scholar
  114. 114.
    Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22:437–467MathSciNetGoogle Scholar
  115. 115.
    Kauffman SA (1991) Antichaos and adaptation. Sci Am 265:78–84Google Scholar
  116. 116.
    Kauffman SA (1993) The origins of order. Oxford University Press, New YorkGoogle Scholar
  117. 117.
    Khorasanizadeh S (2004) The nucleosome: from genomic organization to genomic regulation. Cell 116:259–72Google Scholar
  118. 118.
    Kim KY, Wang J (2007) Potential energy landscape and robustness of a gene regulatory network: toggle switch. PLoS Comput Biol 3:e60MathSciNetGoogle Scholar
  119. 119.
    Klemm K, Bornholdt S (2005) Stable and unstable attractors in Boolean networks. Phys Rev E Stat Nonlin Soft Matter Phys 72:055101MathSciNetGoogle Scholar
  120. 120.
    Klevecz RR, Bolen J, Forrest G, Murray DB (2004) A genomewide oscillation in transcription gates DNA replication and cell cycle. Proc Natl Acad Sci USA 101:1200–5Google Scholar
  121. 121.
    Kloster M, Tang C, Wingreen NS (2005) Finding regulatory modules through large-scale gene‐expression data analysis. Bioinformatics 21:1172–9Google Scholar
  122. 122.
    Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705Google Scholar
  123. 123.
    Kramer BP, Fussenegger M (2005) Hysteresis in a synthetic mammalian gene network. Proc Natl Acad Sci USA 102:9517–9522Google Scholar
  124. 124.
    Krawitz P, Shmulevich I (2007) Basin entropy in Boolean network ensembles. Phys Rev Lett 98:158701Google Scholar
  125. 125.
    Krysinska H, Hoogenkamp M, Ingram R, Wilson N, Tagoh H, Laslo P, Singh H, Bonifer C (2007) A two-step, PU.1‑dependent mechanism for developmentally regulated chromatin remodeling and transcription of the c-fms gene. Mol Cell Biol 27:878–87Google Scholar
  126. 126.
    Kubicek S, Jenuwein T (2004) A crack in histone lysine methylation. Cell 119:903–6Google Scholar
  127. 127.
    Laslo P, Spooner CJ, Warmflash A, Lancki DW, Lee HJ, Sciammas R, Gantner BN, Dinner AR, Singh H (2006) Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 126:755–66Google Scholar
  128. 128.
    Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, Young RA (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799–804Google Scholar
  129. 129.
    Levsky JM, Singer RH (2003) Gene expression and the myth of the average cell. Trends Cell Biol 13:4–6Google Scholar
  130. 130.
    Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-cycle network is robustly designed. Proc Natl Acad Sci USA 101:4781–6Google Scholar
  131. 131.
    Li H, Xuan J, Wang Y, Zhan M (2008) Inferring regulatory networks.Front Biosci 13:263–75Google Scholar
  132. 132.
    Lim HN, van Oudenaarden A (2007) A multistep epigenetic switch enables the stable inheritance of DNA methylation states. Nat Genet 39:269–75Google Scholar
  133. 133.
    Luo F, Yang Y, Chen CF, Chang R, Zhou J, Scheuermann RH (2007) Modular organization of protein interaction networks. Bioinformatics 23:207–14Google Scholar
  134. 134.
    Luscombe NM, Babu MM, Yu H, Snyder M, Teichmann SA, Gerstein M (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431:308–12Google Scholar
  135. 135.
    MacCarthy T, Pomiankowski A, Seymour R (2005) Using large-scale perturbations in gene network reconstruction. BMC Bioinformatics 6:11Google Scholar
  136. 136.
    Mangan S, Alon U (2003) Structure and function of the feed‐forward loop network motif. Proc Natl Acad Sci USA 100:11980–5Google Scholar
  137. 137.
    Manke T, Demetrius L, Vingron M (2006) An entropic characterization of protein interaction networks and cellular robustness. JR Soc Interface 3:843–50Google Scholar
  138. 138.
    Marcotte EM (2001) The path not taken. Nat Biotechnol 19:626–627Google Scholar
  139. 139.
    Margolin AA, Califano A (2007) Theory and limitations of genetic network inference from microarray data. Ann N Y Acad Sci 1115:51–72Google Scholar
  140. 140.
    Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296:910–3Google Scholar
  141. 141.
    Mattick JS (2007) A new paradigm for developmental biology. J Exp Biol 210:1526–47Google Scholar
  142. 142.
    May RM (1972) Will a large complex system be stable? Nature 238:413–414Google Scholar
  143. 143.
    Meissner A, Wernig M, Jaenisch R (2007) Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 25:1177–1181Google Scholar
  144. 144.
    Mellor J (2006) Dynamic nucleosomes and gene transcription. Trends Genet 22:320–9Google Scholar
  145. 145.
    Metzger E, Wissmann M, Schule R (2006) Histone demethylation and androgen‐dependent transcription. Curr Opin Genet Dev 16:513–7Google Scholar
  146. 146.
    Mikkers H, Frisen J (2005) Deconstructing stemness. Embo J 24:2715–9Google Scholar
  147. 147.
    Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298:824–7Google Scholar
  148. 148.
    Monod J, Jacob F (1961) Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb Symp Quant Biol 26:389–401Google Scholar
  149. 149.
    Morceau F, Schnekenburger M, Dicato M, Diederich M (2004) GATA-1: friends, brothers, and coworkers. Ann N Y Acad Sci 1030:537–54Google Scholar
  150. 150.
    Morrison SJ, Uchida N, Weissman IL (1995) The biology of hematopoietic stem cells. Annu Rev Cell Dev Biol 11:35–71Google Scholar
  151. 151.
    Murray JD (1989) Mathematical biology, 2nd edn (1993). Springer, BerlinGoogle Scholar
  152. 152.
    Newman MEJ (2003) The structure and function of complex networks. SIAM Review 45:167–256MathSciNetzbMATHGoogle Scholar
  153. 153.
    Nykter M, Price ND, Aldana M, Ramsey SA, Kauffman SA, Hood L, Yli-Harja O, Shmulevich I (2008) Gene expression dynamics in the macrophage exhibit criticality. Proc Natl Acad Sci USA 105:1897–900Google Scholar
  154. 154.
    Nykter M, Price ND, Larjo A, Aho T, Kauffman SA, Yli-Harja O, Shmulevich I (2008) Critical networks exhibit maximal information diversity in structure‐dynamics relationships. Phys Rev Lett 100:058702Google Scholar
  155. 155.
    Odom DT, Zizlsperger N, Gordon DB, Bell GW, Rinaldi NJ, Murray HL, Volkert TL, Schreiber J, Rolfe PA, Gifford DK, Fraenkel E, Bell GI, Young RA (2004) Control of pancreas and liver gene expression by HNF transcription factors. Science 303:1378–81Google Scholar
  156. 156.
    Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline‐competent induced pluripotent stem cells. Nature 448:313–7Google Scholar
  157. 157.
    Ozbudak EM, Thattai M, Lim HN, Shraiman BI, Van Oudenaarden A (2004) Multistability in the lactose utilization network of Escherichia coli. Nature 427:737–740Google Scholar
  158. 158.
    Pennisi E (2003) Human genome. A low number wins the GeneSweep Pool. Science 300:1484Google Scholar
  159. 159.
    Picht P (1969) Mut zur utopie. Piper, MünchenGoogle Scholar
  160. 160.
    Proulx SR, Promislow DE, Phillips PC (2005) Network thinking in ecology and evolution. Trends Ecol Evol 20:345–53Google Scholar
  161. 161.
    Raff M (2003) Adult stem cell plasticity: fact or artifact? Annu Rev Cell Dev Biol 19:1–22Google Scholar
  162. 162.
    Ralston A and Rossant J (2005) Genetic regulation of stem cell origins in the mouse embryo. Clin Genet 68:106–12Google Scholar
  163. 163.
    Ramo P, Kesseli J, Yli-Harja O (2006) Perturbation avalanches and criticality in gene regulatory networks. J Theor Biol 242:164–70MathSciNetGoogle Scholar
  164. 164.
    Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297:1551–5Google Scholar
  165. 165.
    Reik W, Dean W (2002) Back to the beginning. Nature 420:127Google Scholar
  166. 166.
    Resendis-Antonio O, Freyre-Gonzalez JA, Menchaca-Mendez R, Gutierrez-Rios RM, Martinez-Antonio A, Avila-Sanchez C, Collado-Vides J (2005) Modular analysis of the transcriptional regulatory network of E.coli. Trends Genet 21:16–20Google Scholar
  167. 167.
    Robins H, Krasnitz M, Barak H, Levine AJ (2005) A relative‐entropy algorithm for genomic fingerprinting captures host-phage similarities. J Bacteriol 187:8370–4Google Scholar
  168. 168.
    Roeder I, Glauche I (2006) Towards an understanding of lineage specification in hematopoietic stem cells: a mathematical model for the interaction of transcription factors GATA-1 and PU.1. J Theor Biol 241:852–65MathSciNetGoogle Scholar
  169. 169.
    Salgado H, Santos-Zavaleta A, Gama-Castro S, Peralta-Gil M, Penaloza-Spinola MI, Martinez-Antonio A, Karp PD, Collado-Vides J (2006) The comprehensive updated regulatory network of Escherichia coli K-12. BMC Bioinformatics 7:5Google Scholar
  170. 170.
    Samonte RV, Eichler EE (2002) Segmental duplications and the evolution of the primate genome. Nat Rev Genet 3:65–72Google Scholar
  171. 171.
    Sandberg R, Ernberg I (2005) Assessment of tumor characteristic gene expression in cell lines using a tissue similarity index (TSI). Proc Natl Acad Sci USA 102:2052–7Google Scholar
  172. 172.
    Shivdasani RA (2006) MicroRNAs: regulators of gene expression and cell differentiation. Blood 108:3646–53Google Scholar
  173. 173.
    Shmulevich I, Kauffman SA (2004) Activities and sensitivities in boolean network models. Phys Rev Lett 93:048701Google Scholar
  174. 174.
    Shmulevich I, Kauffman SA, Aldana M (2005) Eukaryotic cells are dynamically ordered or critical but not chaotic. Proc Natl Acad Sci USA 102:13439–44Google Scholar
  175. 175.
    Siegal ML, Promislow DE, Bergman A (2007) Functional and evolutionary inference in gene networks: does topology matter? Genetica 129:83–103Google Scholar
  176. 176.
    Smith MC, Sumner ER, Avery SV (2007) Glutathione and Gts1p drive beneficial variability in the cadmium resistances of individual yeast cells.Mol Microbiol 66:699–712Google Scholar
  177. 177.
    Southall TD, Brand AH (2007) Chromatin profiling in model organisms. Brief Funct Genomic Proteomic 6:133–40Google Scholar
  178. 178.
    Southan C (2004) Has the yo-yo stopped? An assessment of human protein‐coding gene number. Proteomics 4:1712–26Google Scholar
  179. 179.
    Stern CD (2000) Conrad H. Waddington’s contributions to avian and mammalian development, 1930–1940. Int J Dev Biol 44:15–22Google Scholar
  180. 180.
    Strohman R (1994) Epigenesis: the missing beat in biotechnology? Biotechnology (N Y) 12:156–64Google Scholar
  181. 181.
    Stumpf MP, Wiuf C, May RM (2005) Subnets of scale-free networks are not scale-free: sampling properties of networks. Proc Natl Acad Sci USA 102:4221–4Google Scholar
  182. 182.
    Suzuki M, Yamada T, Kihara-Negishi F, Sakurai T, Hara E, Tenen DG, Hozumi N, Oikawa T (2006) Site‐specific DNA methylation by a complex of PU.1 and Dnmt3a/b. Oncogene 25:2477–88Google Scholar
  183. 183.
    Swiers G, Patient R, Loose M (2006) Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage specification.Dev Biol 294:525–40Google Scholar
  184. 184.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–76Google Scholar
  185. 185.
    Tapscott SJ (2005) The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription. Development 132:2685–95Google Scholar
  186. 186.
    Taylor JS, Raes J (2004) Duplication and divergence: The evolution of new genes and old ideas. Annu Rev Genet 38:615–643Google Scholar
  187. 187.
    Teichmann SA, Babu MM (2004) Gene regulatory network growth by duplication. Nat Genet 36:492–6Google Scholar
  188. 188.
    Thieffry D, Huerta AM, Perez-Rueda E, Collado-Vides J (1998) From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. Bioessays 20:433–40Google Scholar
  189. 189.
    Tinbergen N (1952) Derived activities; their causation, biological significance, origin, and emancipation during evolution. Q Rev Biol 27:1–32Google Scholar
  190. 190.
    Toh H, Horimoto K (2002) Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modeling.Bioinformatics 18:287–97Google Scholar
  191. 191.
    Trojer P, Reinberg D (2006) Histone lysine demethylases and their impact on epigenetics. Cell 125:213–7Google Scholar
  192. 192.
    Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15:221–231Google Scholar
  193. 193.
    van Helden J, Wernisch L, Gilbert D, Wodak SJ (2002) Graph-based analysis of metabolic networks. Ernst Schering Res Found Workshop:245–74Google Scholar
  194. 194.
    van Nimwegen E (2003) Scaling laws in the functional content of genomes. Trends Genet 19:479–84Google Scholar
  195. 195.
    Vogel G (2003) Stem cells. ‘Stemness’ genes still elusive. Science 302:371Google Scholar
  196. 196.
    Waddington CH (1940) Organisers and genes. Cambridge University Press, CambridgeGoogle Scholar
  197. 197.
    Waddington CH (1956) Principles of embryology. Allen and Unwin Ltd, LondonGoogle Scholar
  198. 198.
    Waddington CH (1957) The strategy of the genes. Allen and Unwin, LondonGoogle Scholar
  199. 199.
    Watts DJ (2004) The “new” science of networks. Ann Rev Sociol 20:243–270Google Scholar
  200. 200.
    Webster G, Goodwin BC (1999) A structuralist approach to morphology. Riv Biol 92:495–8Google Scholar
  201. 201.
    Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–24Google Scholar
  202. 202.
    Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE, Matese JC, Perou CM, Hurt MM, Brown PO, Botstein D (2002) Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 13:1977–2000Google Scholar
  203. 203.
    Wilkins AS (2007) Colloquium Papers: Between “design” and “bricolage”: Genetic networks, levels of selection, and adaptive evolution. Proc Natl Acad Sci USA 104 Suppl 1:8590–6Google Scholar
  204. 204.
    Wuensche A (1998) Genomic regulation modeled as a network with basins of attraction. Pac Symp Biocomput:89–102Google Scholar
  205. 205.
    Xiong W, Ferrell JE Jr. (2003) A positive‐feedback‐based bistable ‘memory module’ that governs a cell fate decision. Nature 426:460–465Google Scholar
  206. 206.
    Xu X, Wang L, Ding D (2004) Learning module networks from genome‐wide location and expression data. FEBS Lett 578:297–304Google Scholar
  207. 207.
    Yu H, Greenbaum D, Xin Lu H, Zhu X, Gerstein M (2004) Genomic analysis of essentiality within protein networks. Trends Genet 20:227–31Google Scholar
  208. 208.
    Yu H, Kim PM, Sprecher E, Trifonov V, Gerstein M (2007) The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput Biol 3:e59MathSciNetGoogle Scholar
  209. 209.
    Yuh CH, Bolouri H, Davidson EH (2001) Cis‐regulatory logic in the endo16 gene: switching from a specification to a differentiation mode of control. Development 128:617–29Google Scholar

Books and Reviews

  1. 210.
    Huang S (2004) Back to the biology in systems biology: what can we learn from biomolecular networks. Brief Funct Genomics Proteomics 2:279–297Google Scholar
  2. 211.
    Huang S (2007) Cell fates as attractors – stability and flexibility of cellular phenotype. In: Endothelial biomedicine, 1st edn. Cambridge University Press, New York, pp 1761–1779Google Scholar
  3. 212.
    Huang S, Ingber DE (2006) A non‐genetic basis for cancer progression and metastasis: self‐organizing attractors in cell regulatory networks. Breast Dis 26:27–54zbMATHGoogle Scholar
  4. 213.
    Kaneko K (2006) Life: An introduction to complex systems biology, 1edn. Springer, BerlinGoogle Scholar
  5. 214.
    Kauffman SA (1991) Antichaos and adaptation. Sci Am 265:78–84Google Scholar
  6. 215.
    Kauffman SA (1993) The origins of order. Oxford University Press, New YorkGoogle Scholar
  7. 216.
    Kauffman SA (1996) At home in the universe: the search for the laws of self‐organization and complexity. Oxford University Press, New YorkGoogle Scholar
  8. 217.
    Laurent M, Kellershohn N (1999) Multistability: a major means of differentiation and evolution in biological systems. Trends Biochem Sci 24:418–422Google Scholar
  9. 218.
    Wilkins AS (2007) Colloquium papers: Between “design” and “bricolage”: Genetic networks, levels of selection, and adaptive evolution. Proc Natl Acad Sci USA 104 Suppl 1:8590–6 Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Sui Huang
    • 1
  • Stuart A. Kauffman
    • 1
  1. 1.Institute for Biocomplexity and InformaticsDepartment of Biological Sciences, University of CalgaryCalgaryCanada