Skip to main content

Community Structure in Graphs

  • Reference work entry

Article Outline

Glossary

Definition of the Subject

Introduction

Elements of Community Detection

Computer Science: Graph Partitioning

Social Science: Hierarchical and k‑Means Clustering

New Methods

Testing Methods

The Mesoscopic Description of a Graph

Future Directions

Bibliography

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,500.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Graph :

A graph is a set of elements, called vertices or nodes, where pairs of vertices are connected by relational links, or edges.A graph can be considered as the simplest representation of a complex system, where the vertices are the elementary units of the system and the edges represent their mutual interactions.

Community :

A community is a group of graph vertices that “belong together” according to some precisely defined criteria which can be measured. Many definitions have been proposed. A common approach is to define a community as a group of vertices such that the density of edges between vertices of the group is higher than the average edge density in the graph. In the text also the terms module or cluster are used when referring to a community.

Partition :

A partition is a split of a graph in subsets with each vertex assigned to only one of them. This last condition may be relaxed to include the case of overlapping communities, imposing that each vertex is assigned to at least one subset.

Dendrogram :

A dendrogram, or hierarchical tree, is a branching diagram representing successive divisions of a graph into communities.Dendrograms are frequently used in social network analysis and computational biology, especially in biological taxonomy.

Scalability :

Scalability expresses the computational complexity of an algorithm. If the running time of a community detection algorithm, working on a graph with n vertices and m edges, is proportional to the product \( { n^\alpha m^\beta } \), one says that the algorithm scales as \( { O(n^\alpha m^\beta) } \).Knowing the scalability allows to estimate the range of applicability of an algorithm.

Bibliography

Primary Literature

  1. Euler L (1736) Solutio problematis ad geometriam situs pertinentis. Commentarii Academiae Petropolitanae 8:128–140

    Google Scholar 

  2. Bollobás B (1998) Modern Graph Theory. Springer, New York

    Google Scholar 

  3. Wasserman S, Faust K (1994) Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. Scott JP (2000) Social Network Analysis. Sage Publications Ltd, London

    Google Scholar 

  5. Barabási AL, Albert R (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97

    Google Scholar 

  6. Dorogovtsev SN, Mendes JFF (2003) Evolution of Networks: from biological nets to the Internet and WWW. Oxford University Press, Oxford

    MATH  Google Scholar 

  7. Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167–256

    Article  MathSciNet  MATH  Google Scholar 

  8. Pastor-Satorras R, Vespignani A (2004) Evolution and structure of the Internet: A statistical physics approach. Cambridge University Press, Cambridge

    Book  Google Scholar 

  9. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU (2006) Complex Networks: Structure and Dynamics. Phys Rep 424:175–308

    Article  MathSciNet  Google Scholar 

  10. Erdös P, Rényi A (1959) On Random Graphs. Publicationes Mathematicae Debrecen 6:290–297

    Google Scholar 

  11. Flake GW, Lawrence S, Lee Giles C, Coetzee FM (2002) Self-Organization and Identification of Web Communities. IEEE Comput 35(3):66–71

    Article  Google Scholar 

  12. Guimerà R, Amaral LAN (2005) Functional cartography of complex metabolic networks. Nature 433:895–900

    Google Scholar 

  13. Palla G, Derényi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435:814–818

    Google Scholar 

  14. Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Nat Acad Sci USA 99(12): 7821–7826

    Article  MathSciNet  MATH  Google Scholar 

  15. Lusseau D, Newman MEJ (2004) Identifying the role that animals play in their social networks. Proc R Soc Lond B 271: S477–S481

    Article  Google Scholar 

  16. Pimm SL (1979) The structure of food webs. Theor Popul Biol 16:144–158

    Article  Google Scholar 

  17. Krause AE, Frank KA, Mason DM, Ulanowicz RE, Taylor WW (2003) Compartments exposed in food-web structure. Nature 426:282–285

    Article  Google Scholar 

  18. Granovetter M (1973) The Strength of Weak Ties. Am J Sociol 78:1360–1380

    Article  Google Scholar 

  19. Burt RS (1976) Positions in Networks. Soc Force 55(1):93–122

    MathSciNet  Google Scholar 

  20. Freeman LC (1977) A Set of Measures of Centrality Based on Betweenness. Sociometry 40(1):35–41

    Article  Google Scholar 

  21. Pollner P, Palla G, Vicsek T (2006) Preferential attachment of communities: The same principle, but a higher level. Europhys Lett 73(3):478–484

    Article  MathSciNet  Google Scholar 

  22. Newman MEJ (2004) Detecting community structure in networks. Eur Phys J B 38:321–330

    Article  Google Scholar 

  23. Danon L, Duch J, Arenas A, Díaz-Guilera A (2007) Community structure identification. In: Caldarelli G, Vespignani A (eds) Large Scale Structure and Dynamics of Complex Networks: From Information Technology to Finance and Natural Science. World Scientific, Singapore, pp 93–114

    Google Scholar 

  24. Bron C, Kerbosch J (1973) Finding all cliques on an undirected graph. Commun ACM 16:575–577

    Article  MATH  Google Scholar 

  25. Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D (2004) Defining and identifying communities in networks. Proc Nat Acad Sci USA 101(9):2658–2663

    Article  Google Scholar 

  26. Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69:026113

    Article  Google Scholar 

  27. Arenas A, Fernández A, Fortunato S, Gómez S (2007) Motif-based communities in complex networks. arXiv:0710.0059

    Google Scholar 

  28. Reichardt J, Bornholdt S (2006) Statistical mechanics of community detection. Phys Rev E 74:016110

    Article  MathSciNet  Google Scholar 

  29. Massen CP, Doye JPK (2006) Thermodynamics of community structure. arXiv:cond-mat/0610077

    Google Scholar 

  30. Arenas A, Duch J, Fernándes A, Gómez S (2007) Size reduction of complex networks preserving modularity. New J Phys 9(6):176–180

    Google Scholar 

  31. Guimerà R, Sales-Pardo M, Amaral LAN (2004) Modularity from fluctuations in random graphs and complex networks. Phys Rev E 70:025101(R)

    Google Scholar 

  32. Fortunato S, Barthélemy M (2007) Resolution limit in community detection. Proc Nat Acad Sci USA 104(1):36–41

    Google Scholar 

  33. Gfeller D, Chappelier J-C, De Los Rios P (2005) Finding instabilities in the community structure of complex networks. Phys Rev E 72:056135

    Article  Google Scholar 

  34. Pothen A (1997) Graph partitioning algorithms with applications to scientific computing. In: Keyes DE, Sameh A, Venkatakrishnan V (eds) Parallel Numerical Algorithms. Kluwer Academic Press, Boston, pp 323–368

    Chapter  Google Scholar 

  35. Kernighan BW, Lin S (1970) An efficient heuristic procedure for partitioning graphs. Bell Syst Tech J 49:291–307

    MATH  Google Scholar 

  36. Golub GH, Van Loan CF (1989) Matrix computations. John Hopkins University Press, Baltimore

    MATH  Google Scholar 

  37. JB MacQueen (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley. University of California Press, pp 281–297

    Google Scholar 

  38. Brandes U (2001) A faster algorithm for betweenness centrality. J Math Sociol 25(2):163–177

    Article  MATH  Google Scholar 

  39. Newman MEJ (2005) A measure of betweenness centrality based on random walks. Soc Netw 27:39–54

    Article  Google Scholar 

  40. Tyler JR, Wilkinson DM, Huberman BA (2003) Email as spectroscopy: automated discovery of community structure within organizations. In: Huysman M, Wenger E, Wulf V (eds) Proceeding of the First International Conference on Communities and Technologies. Kluwer Academic Press, Amsterdam

    Google Scholar 

  41. Wilkinson DM, Huberman BA (2004) A method for finding communities of related genes. Proc Nat Acad Sci USA 101(1): 5241–5248

    Article  Google Scholar 

  42. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87:198701

    Article  Google Scholar 

  43. Fortunato S, Latora V, Marchiori M (2004) A method to find community structures based on information centrality. Phys Rev E 70:056104

    Article  Google Scholar 

  44. Watts D, Strogatz SH (1998) Collective dynamics of “small‐world” networks. Nature 393:440–442

    Article  Google Scholar 

  45. Brandes U, Delling D, Gaertler M, Görke R, Hoefer M, Nikoloski Z, Wagner D (2007) On finding graph clusterings with maximum modularity. In: Proceedings of the 33rd International Workshop on Graph-Theoretical Concepts in Computer Science (WG’07). Springer, Berlin

    Google Scholar 

  46. Newman MEJ (2004) Fast algorithm for detecting community structure in networks. Phys Rev E 69:066133

    Article  Google Scholar 

  47. Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70:066111

    Article  Google Scholar 

  48. Danon L, Díaz-Guilera A, Arenas A (2006) The effect of size heterogeneity on community identification in complex networks. J Stat Mech Theory Exp 11:P11010

    Google Scholar 

  49. Pujol JM, Béjar J, Delgado J (2006) Clustering algorithm for determining community structure in large networks. Phys Rev E 74:016107

    Google Scholar 

  50. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  MathSciNet  MATH  Google Scholar 

  51. Massen CP, Doye JPK (2005) Identifying communities within energy landscapes. Phys Rev E 71:046101

    Article  MathSciNet  Google Scholar 

  52. Boettcher S, Percus AG (2001) Optimization with extremal dynamics. Phys Rev Lett 86:5211–5214

    Article  Google Scholar 

  53. Duch J, Arenas A (2005) Community detection in complex networks using extremal optimization. Phys Rev E 72:027104

    Article  Google Scholar 

  54. Newman MEJ (2006) Modularity and community structure in networks. Proc Nat Acad Sci USA 103 (23):8577–8582

    Article  Google Scholar 

  55. Newman MEJ (2006) Finding community structure in networks using the eigenvectors of matrices. Phys Rev E 74:036104

    Article  MathSciNet  Google Scholar 

  56. Reichardt J, Bornholdt S (2007) Partitioning and modularity of graphs with arbitrary degree distribution. Phys Rev E 76:015102(R)

    Article  Google Scholar 

  57. Reichardt J, Bornholdt S (2006) When are networks truly modular? Phys D 224:20–26

    Article  MathSciNet  MATH  Google Scholar 

  58. Kumpula JM, Saramäki J, Kaski K, Kertész J (2007) Limited resolution in complex network community detection with Potts model approach. Eur Phys J B 56:41–45

    Google Scholar 

  59. Arenas A, Fernándes A, Gómez S (2007) Multiple resolution of the modular structure of complex networks. arXiv:physics/0703218

    Google Scholar 

  60. Ruan J, Zhang W (2007) Identifying network communities with high resolution. arXiv:0704.3759

    Google Scholar 

  61. Kumpula JM, Saramäki J, Kaski K, Kertész J (2007) Limited resolution and multiresolution methods in complex network community detection. In: Kertész J, Bornholdt S, Mantegna RN (eds) Noise and Stochastics in Complex Systems and Finance. Proc SPIE 6601:660116

    Google Scholar 

  62. Muff S, Rao F, Caflisch A (2005) Local modularity measure for network clusterizations. Phys Rev E 72:056107

    Article  Google Scholar 

  63. Donetti L, Muñoz MA (2004) Detecting network communities: a new systematic and efficient algorithm. J Stat Mech Theory Exp P10012

    Google Scholar 

  64. Capocci A, Servedio VDP, Caldarelli G, Colaiori F (2004) Detecting communities in large networks. Phys A 352(2–4):669–676

    Google Scholar 

  65. Wu F, Huberman BA (2004) Finding communities in linear time: a physics approach. Eur Phys J B 38:331–338

    Article  Google Scholar 

  66. Eriksen KA, Simonsen I, Maslov S, Sneppen K (2003) Modularity and extreme edges of the Internet. Phys Rev Lett 90(14):148701

    Article  Google Scholar 

  67. Simonsen I, Eriksen KA, Maslov S, Sneppen K (2004) Diffusion on complex networks: a way to probe their large-scale topological structure. Physica A 336:163–173

    Article  Google Scholar 

  68. Wu FY (1982) The Potts model. Rev Mod Phys 54:235–268

    Article  Google Scholar 

  69. Blatt M, Wiseman S, Domany E (1996) Superparamagnetic clustering of data. Phys Rev Lett 76(18):3251–3254

    Article  Google Scholar 

  70. Reichardt J, Bornholdt S (2004) Detecting fuzzy community structure in complex networks. Phys Rev Lett 93(21):218701

    Article  Google Scholar 

  71. Mezard M, Parisi G, Virasoro M (1987) Spin glass theory and beyond. World Scientific Publishing Company, Singapore

    MATH  Google Scholar 

  72. Zhou H (2003) Network landscape from a Brownian particle’s perspective. Phys Rev E 67:041908

    Article  Google Scholar 

  73. Zhou H (2003) Distance, dissimilarity index, and network community structure. Phys Rev E 67:061901

    Article  Google Scholar 

  74. Zhou H, Lipowsky R (2004) Network Brownian motion: A new method to measure vertex‐vertex proximity and to identify communities and subcommunities. Lect Notes Comput Sci 3038:1062–1069

    Article  Google Scholar 

  75. Latapy M, Pons P 92005) Computing communities in large networks using random walks. Lect Notes Comput Sci 3733: 284–293

    Google Scholar 

  76. Arenas A, Díaz-Guilera A, Pérez-Vicente CJ (2006) Synchronization reveals topological scales in complex networks. Phys Rev Lett 96:114102

    Google Scholar 

  77. Kuramoto Y (1984) Chemical Oscillations, Waves and Turbulence. Springer, Berlin

    Book  MATH  Google Scholar 

  78. Arenas A, Díaz-Guilera A (2007) Synchronization and modularity in complex networks. Eur Phys J ST 143:19–25

    Google Scholar 

  79. Boccaletti S, Ivanchenko M, Latora V, Pluchino A, Rapisarda A (2007) Detecting complex network modularity by dynamical clustering. Phys Rev E 76:045102(R)

    Google Scholar 

  80. Pluchino A, Latora V, Rapisarda A (2005) Changing opinions in a changing world: a new perspective in sociophysics. Int J Mod Phys C 16(4):505–522

    Article  Google Scholar 

  81. Farkas I, Ábel D, Palla G, Vicsek T (2007) Weighted network modules. New J Phys 9:180

    Google Scholar 

  82. Palla G, Farkas IJ, Pollner P, Derényi I, Vicsek T (2007) Directed network modules. New J Phys 9:186

    Google Scholar 

  83. Palla G, Barabási A-L, Vicsek T (2007) Quantifying social groups evolution. Nature 446:664–667

    Google Scholar 

  84. van Dongen S (2000) Graph Clustering by Flow Simulation. Ph D thesis, University of Utrecht, The Netherlands

    Google Scholar 

  85. Newman MEJ, Leicht E (2007) Mixture models and exploratory analysis in networks. Proc Nat Acad Sci USA 104(23):9564–9569

    Article  MATH  Google Scholar 

  86. Bagrow JP, Bollt EM (2005) Local method for detecting communities. Phys Rev E 72:046108

    Article  Google Scholar 

  87. Clauset A (2005) Finding local community structure in networks. Phys Rev E 72:026132

    Article  Google Scholar 

  88. Eckmann J-P, Moses E (2002) Curvature of co-links uncovers hidden thematic layers in the World Wide Web. Proc Nat Acad Sci USA 99(9):5825–5829

    Article  MathSciNet  Google Scholar 

  89. Sales-Pardo M, Guimerá R, Amaral LAN (2007) Extracting the hierarchical organization of complex systems. arXiv:0705.1679

    Google Scholar 

  90. Rosvall M, Bergstrom CT (2007) An information‐theoretic framework for resolving community structure in complex networks. Proc Nat Acad Sci USA 104(18):7327–7331

    Article  Google Scholar 

  91. Shannon CE, Weaver V (1949) The Mathematical Theory of Communication. University of Illinois Press, Champaign

    MATH  Google Scholar 

  92. Danon L, Díaz-Guilera A, Duch J, Arenas A (2005) Comparing community structure identification. J Stat Mech Theory Exp P09008

    Google Scholar 

  93. Gustafsson M, Hörnquist M, Lombardi A (2006) Comparison and validation of community structures in complex networks. Physica A 367:559–576

    Google Scholar 

  94. Zachary WW (1977) An information flow model for conflict and fission in small groups. J Anthr Res 33:452–473

    Google Scholar 

  95. Lusseau D (2003) The emergent properties of a dolphin social network. Proc R Soc Lond B 270(2):S186–188

    Article  Google Scholar 

  96. Guimerá R, Amaral LAN (2005) Cartography of complex networks: modules and universal roles. J Stat Mech Theory Exp P02001

    Google Scholar 

Books and Reviews

  1. Bollobás B (2001) Random Graphs. Cambridge University Press, Cambridge

    Google Scholar 

  2. Chung FRK (1997) Spectral Graph Theory. CBMS Regional Conference Series in Mathematics 92. American Mathematical Society, Providence

    Google Scholar 

  3. Dorogovtsev SN, Mendes JFF (2003) Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press, Oxford

    MATH  Google Scholar 

  4. Elsner U (1997) Graph Partitioning: a Survey. Technical Report 97-27, Technische Universität Chemnitz, Chemnitz

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Fortunato, S., Castellano, C. (2012). Community Structure in Graphs. In: Meyers, R. (eds) Computational Complexity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1800-9_33

Download citation

Publish with us

Policies and ethics