Computational Complexity

2012 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Voting Procedures, Complexity of

  • Olivier Hudry
Reference work entry

Article Outline


Definition of the Subject


Common Voting Procedures

Complexity Results

Further Directions




Linear Order Condorcet Winner Vote Procedure Plurality Rule Borda Score 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.



I would like to thank Ulle Endriss, Jérôme Lang and Bernard Monjardet for their help. Their commentswere very useful to improve the text.


Primary Literature

  1. 1.
    Aaronson S, Kuperberg G (2008) Complexity Zoo.
  2. 2.
    Ailon N, Alon N (2007) Hardness of fully dense problems.Inf Comput 205:117–1129MathSciNetGoogle Scholar
  3. 3.
    Ailon N, Charikar M, Newman A (2005) Aggregating inconsistent information: ranking and clustering.Proceedings of the 37th annual ACM symposium on Theory of computing (STOC), pp 684–693Google Scholar
  4. 4.
    Aizerman MA, Aleskerov FT (1995) Theory of choice. North Holland, Elsevier, AmsterdamGoogle Scholar
  5. 5.
    Alon N (2006) Ranking tournaments. SIAM J Discret Math 20(1):137–142MATHGoogle Scholar
  6. 6.
    Alon N, Spencer J (2000) The probabilistic method, 2nd edn.Wiley, New YorkMATHGoogle Scholar
  7. 7.
    Arrow KJ (1963) Social choice and individual values, rev edn.Wiley, New YorkGoogle Scholar
  8. 8.
    Arrow KJ, Raynaud H (1986) Social choice and multicriterion decision-making.MIT Press, CambridgeMATHGoogle Scholar
  9. 9.
    Arrow KJ, Sen AK, Suzumura K (eds) (2002) Handbook of social choice and welfare, vol 1.North-Holland, AmsterdamGoogle Scholar
  10. 10.
    Ausiello G, Crescenzi P, Gambosi G, Kann V, Marchetti-Spaccamela A, Protasi M (2003) Complexity and Approximation, 2nd edn.Springer, BerlinGoogle Scholar
  11. 11.
    Baldwin JM (1926) The technique of the Nanson preferential majority system of election.Proc Royal Soc Victoria 39:42–52Google Scholar
  12. 12.
    Bang-Jensen J, Gutin G (2001) Digraphs: theory, algorithms, and applications.Springer, BerlinMATHGoogle Scholar
  13. 13.
    Banks J (1985) Sophisticated voting outcomes and agenda control.Soc Choice Welf 2:295–306MathSciNetGoogle Scholar
  14. 14.
    Barnett WA, Moulin H, Salles M, Schofield NJ (eds) (1995) Social choice, welfare and ethics.Cambridge University Press, New YorkMATHGoogle Scholar
  15. 15.
    Barthélemy J-P (1979) Caractérisations axiomatiques de la distance de la différence symétrique entre des relations binaires.Math Sci Hum 67:85–113Google Scholar
  16. 16.
    Barthélemy J-P, Guénoche A, Hudry O (1989) Median linear orders: heuristics and a branch and bound algorithm.Eur J Oper Res 41:313–325Google Scholar
  17. 17.
    Barthélemy J-P, Monjardet B (1981) The median procedure in cluster analysis and social choice theory.Math Soc Sci 1:235–267Google Scholar
  18. 18.
    Bartholdi III JJ, Orlin J (1991) Single transferable vote resists strategic voting.Soc Choice Welf 8(4):341–354MathSciNetMATHGoogle Scholar
  19. 19.
    Bartholdi III JJ, Tovey CA, Trick MA (1989) Voting schemes for which it can be difficult to tell who won the election.Soc Choice Welf 6:157–165MathSciNetMATHGoogle Scholar
  20. 20.
    Bartholdi III JJ, Tovey CA, Trick MA (1989) The Computational Difficulty of Manipulating an Election.Soc Choice Welf 6:227–241MathSciNetMATHGoogle Scholar
  21. 21.
    Bartholdi III JJ, Tovey CA, Trick MA (1992) How hard is it to control an election?Math Comput Model 16(8/9):27–40MathSciNetMATHGoogle Scholar
  22. 22.
    Berge C (1985) Graphs. North-Holland, AmsterdamMATHGoogle Scholar
  23. 23.
    Black D (1958) The theory of committees and elections.Cambridge University Press, CambridgeMATHGoogle Scholar
  24. 24.
    Borda J-C (1784) Mémoire sur les élections au scrutin. Histoire de l'Académie Royale des Sciences pour 1781, Paris, pp 657–665. English translation: de Grazia A (1953) Mathematical Derivation of an Election System. Isis 44:42–51Google Scholar
  25. 25.
    Brams SJ, Fishburn PC (1978) Approval Voting.Am Political Sci Rev 72(3):831–857Google Scholar
  26. 26.
    Brams SJ, Fishburn PC (1983) Approval Voting.Birkhauser, BostonMATHGoogle Scholar
  27. 27.
    Brams SJ, Fishburn PC (2002) Voting Procedures. In: Arrow K, Sen A, Suzumura K (eds) Handbook of Social Choice and Welfare, vol 1.Elsevier, Amsterdam, pp 175–236Google Scholar
  28. 28.
    Brandt F, Fischer F (2008) Computing the minimal covering set. Math Soc Sci 58(2):254–268 MathSciNetGoogle Scholar
  29. 29.
    Brandt F, Fischer F, Harrenstein P (2006) The computational complexity of choice sets. In: Endriss U, Lang J (eds) Proceedings of the conference Computational Social Choice 2006.University of Amsterdam, The Netherlands, pp 63–76Google Scholar
  30. 30.
    Brandt F, Fischer F, Harrenstein P, Mair M (2008) A computational analysis of the tournament equilibrium set. In: Fox D, Gomes CP (eds) Proc. of AAAI, pp. 38–43Google Scholar
  31. 31.
    Caritat MJAN, marquis de Condorcet (1785) Essai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité des voix. Imprimerie Royale, ParisGoogle Scholar
  32. 32.
    Caspard N, Monjardet B, Leclerc B (2007) Ensembles ordonnés finis: concepts, résultats et usages.Springer, BerlinMATHGoogle Scholar
  33. 33.
    Chamberlin JR (1985) An investigation into the effective manipulability of four voting systems.Behav Sci 30:195–203MathSciNetGoogle Scholar
  34. 34.
    Charbit P, Thomassé S, Yeo A (2007) The minimum feedback arc set problem is NP-hard for tournaments.Comb Probab Comput 16(1):1–4Google Scholar
  35. 35.
    Charon I, Hudry O (2006) A branch and bound algorithm to solve the linear ordering problem for weighted tournaments.Discret Appl Math 154:2097–2116MathSciNetMATHGoogle Scholar
  36. 36.
    Charon I, Hudry O (2007) A survey on the linear ordering problem for weighted or unweighted tournaments. 4OR 5(1):5–60Google Scholar
  37. 37.
    Charon I, Guénoche A, Hudry O, Woirgard F (1997) New results on the computation of median orders.Discret Math 165–166:139–154Google Scholar
  38. 38.
    Chevaleyre Y, Endriss U, Lang J, Maudet N (2007) A short introduction to computational social choice. Proceedings of the 33rd Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM-2007). Lecture Notes in Computer Science, vol 4362. Springer, Berlin, pp 51–69Google Scholar
  39. 39.
    Christian R, Fellows M, Rosamond F, Slinko A (2006) On complexity of lobbying in multiple referenda. Proceedings of the First International Workshop on Computational Social Choice (COMSOC 2006).University of Amsterdam, pp 87–96Google Scholar
  40. 40.
    Colomer JM, McLean I (1998) Electing Popes: Approval Balloting and Qualified-Majority Rule.J Interdisciplinary History 29(1):1–22Google Scholar
  41. 41.
    Conitzer V (2006) Computing Slater Rankings Using Similarities Among Candidates. In: Proceedings of the 21st National Conference on Artificial Intelligence, AAAI-06, Boston, pp. 613–619Google Scholar
  42. 42.
    Conitzer V (2007) Eliciting single-peaked preferences using comparison queries.Proceedings of the 6th International Joint Conference on Autonomous Agents and Multi Agent Systems (AAMAS-07).Honolulu, USA, pp 408–415Google Scholar
  43. 43.
    Conitzer V, Sandholm T (2002) Vote elicitation: complexity and strategy-proofness.Proceedings of the National Conference on Artificial Intelligence (AAAI), pp 392–397Google Scholar
  44. 44.
    Conitzer V, Sandholm T (2002) Complexity of manipulating elections with few candidates. Proceedings of the 18th National Conference on Artificial Intelligence (AAAI), pp 314–319Google Scholar
  45. 45.
    Conitzer V, Sandholm T (2003) Universal voting protocal tweaks to make manipulation hard. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI-03), Acapulco, Mexico, pp 781–788Google Scholar
  46. 46.
    Conitzer V, Sandholm T (2006) Nonexistence of voting rules that are usually hard to manipulate.Proceedings of the 21st National Conference on Artificial Intelligence (AAAI-06), Boston, pp 627–634Google Scholar
  47. 47.
    Conitzer V, Lang J, Sandholm T (2003) How many candidates are needed to make elections hard to manipulate?Theoretical Aspects of Rationality and Knowledge (TARK), pp 201–214Google Scholar
  48. 48.
    Copeland AH (1951) A “reasonable” social welfare function.Seminar on applications of mathematics to the social sciences. University of MichiganGoogle Scholar
  49. 49.
    Coppersmith T, Winograd S (1987) Matrix multiplication via arithmetic progression. In: Proc 19th Ann ACM Symp Theor Comput, pp 1–6Google Scholar
  50. 50.
    Coppersmith D, Fleischer L, Rudra A (2006) Ordering by weighted number of wins gives a good ranking for weighted tournaments.Proceedings of the 17th annual ACM-SIAM symposium on discrete algorithms (SODA'06), pp 776–782Google Scholar
  51. 51.
    Cormen T, Leiserson C, Rivest R (1990) Introduction to algorithms, 2nd edn 2001.MIT Press, CambridgeGoogle Scholar
  52. 52.
    Cox GW (1987) The Cabinet and the Development of Political Parties in Victorian England.Cambridge University Press, New YorkGoogle Scholar
  53. 53.
    Czygrinow A, Poljak S, Rödl V (1999) Constructive quasi-Ramsey numbers and tournament ranking.SIAM J Discret Math 12(1):48–63Google Scholar
  54. 54.
    Daunou PCF (1803) Mémoire sur les élections au scrutin. Baudoin, Paris, an XIGoogle Scholar
  55. 55.
    Debord B (1987) Caractérisation des matrices de préférences nettes et méthodes d'agrégation associées. Math Sci Hum 97:5–17MathSciNetMATHGoogle Scholar
  56. 56.
    Debord B (1987) Axiomatisation de procédures d'agrégation de préférences. Ph D thesis, Université scientifique technologique et médicale de GrenobleGoogle Scholar
  57. 57.
    de la Vega WF (1983) On the maximal cardinality of a consistent set of arcs in a random tournament.J Comb Theor B 35:328–332MATHGoogle Scholar
  58. 58.
    Dodgson CL (1873) A Discussion of the Various Methods of Procedure in Conducting Elections. Imprint by Gardner EB, Hall EP, Stacy JH. Printers to the University, Oxford. Reprinted In: Black D (1958) The Theory of Committees and Elections. Cambridge University Press, Cambridge, pp 214–222Google Scholar
  59. 59.
    Dodgson CL (1874) Suggestions as to the Best Method of Taking Votes, Where More than Two Issues are to be Voted on. Imprint by Hall EP, Stacy JH. Printers to the University, Oxford. Reprinted In: Black D (1958) The Theory of Committees and Elections. Cambridge University Press, Cambridge, pp 222–224Google Scholar
  60. 60.
    Dodgson CL (1876) A method of taking votes on more than two issues, Clarendon Press, Oxford.Reprint In: Black D (1958) The theory of committees and elections, Cambridge University Press, Cambridge, pp 224–234; and In: McLean I, Urken A (1995) Classics of social choice. University of Michigan Press, Ann ArborGoogle Scholar
  61. 61.
    Dom M, Guo J, Hüffner F, Niedermeier R, Truß A (2006) Fixed-Parameter Tractability Results for Feedback Set Problems in Tournaments.Lecture Notes in Computer Science, vol 3998.Springer, Berlin, pp 320–331Google Scholar
  62. 62.
    Downey RG, Fellows MR (1999) Parameterized complexity.Springer, BerlinGoogle Scholar
  63. 63.
    Dummett M (1984) Voting Procedures. Clarendon Press, OxfordGoogle Scholar
  64. 64.
    Dutta B (1988) Covering sets and a new Condorcet choice correspondence.J Economic Theory 44:63–80MATHGoogle Scholar
  65. 65.
    Dwork C, Kumar R, Naor M, Sivakumar D (2001) Rank aggregation methods for the Web.Proceedings of the 10th international conference on World Wide Web (WWW10), Hong Kong, pp 613–622Google Scholar
  66. 66.
    Elkin E, Lipmaa H (2006) Hybrid voting protocols and hardness of manipulation.In: Endriss U, Lang J (eds) Proceedings of the First International Workshop on Computational Social Choice (COMSOC 2006).University of Amsterdam, pp 178–191Google Scholar
  67. 67.
    Elster J, Hylland A (eds) (1986) Foundations of Social Choice Theory.Cambridge University Press, New YorkGoogle Scholar
  68. 68.
    Erdös P, Moser L (1964) On the representation of directed graphs as unions of orderings.Magyar Tud Akad Mat Kutato Int Közl 9:125–132Google Scholar
  69. 69.
    Even G, Naor JS, Sudan M, Schieber B (1998) Approximating minimum feedback sets and multicuts in directed graphs.Algorithmica 20(2):151–174MathSciNetMATHGoogle Scholar
  70. 70.
    Fagin R, Kumar R, Mahdian M, Sivakumar D, Vee E (2005) Rank Aggregation: An Algorithmic Perspective.unpublished manuscriptGoogle Scholar
  71. 71.
    Faliszewski P, Hemaspaandra E, Hemaspaandra L (2006) The complexity of bribery in elections. In: Endriss U, Lang J (eds) Proceedings of the First International Workshop on Computational Social Choice (COMSOC 2006).University of Amsterdam, pp 178–191Google Scholar
  72. 72.
    Faliszewski P, Hemaspaandra E, Hemaspaandra L, Rothe J (2006) A richer understanding of the complexity of election systems. Technical report TR-2006-903, University of Rochester.To appear in: Ravi S, Shukla S (eds) (2008) Fundamental Problems in Computing: Essays in honor of Professor Daniel J. Rosenkrantz. Springer, BerlinGoogle Scholar
  73. 73.
    Faliszewski P, Hemaspaandra E, Hemaspaandra L, Rothe J (2007) Llull and Copeland Voting Broadly Resist Bribery and Control.Technical report TR-2006-903.University of Rochester, NYGoogle Scholar
  74. 74.
    Fishburn PC (1973) Interval representations for interval orders and semiorders.J Math Psychol 10:91–105MathSciNetMATHGoogle Scholar
  75. 75.
    Fishburn PC (1973) The theory of social choice.Princeton University Press, PrincetonMATHGoogle Scholar
  76. 76.
    Fishburn PC (1977) Condorcet social choice functions.SIAM J Appl Math 33:469–489MathSciNetMATHGoogle Scholar
  77. 77.
    Fishburn PC (1985) Interval orders and interval graphs, a study of partially ordered sets.Wiley, New YorkMATHGoogle Scholar
  78. 78.
    Garey MR, Johnson DS (1979) Computers and intractability, a guide to the theory of NP-completeness.Freeman, New YorkMATHGoogle Scholar
  79. 79.
    Gibbard A (1973) Manipulation of voting schemes.Econometrica 41:587–602MathSciNetMATHGoogle Scholar
  80. 80.
    Guilbaud GT (1952) Les théories de l'intérêt général et le problème logique de l'agrégation.Économie Appl 5(4):501–584; Éléments de la théorie des jeux, 1968.Dunod, ParisGoogle Scholar
  81. 81.
    Hägele G, Pukelsheim F (2001) Llull's writings on electoral systems.Studia Lulliana 3:3–38Google Scholar
  82. 82.
    Hemaspaandra L (2000) Complexity classes. In: Rosen KH (ed) Handbook of discrete and combinatorial mathematics.CRC Press, Boca Raton, pp 1085–1090Google Scholar
  83. 83.
    Hemaspaandra E, Hemaspaandra L (2007) Dichotomy for voting systems.J Comput Syst Sci 73(1):73–83MathSciNetMATHGoogle Scholar
  84. 84.
    Hemaspaandra E, Hemaspaandra L, Rothe J (1997) Exact analysis of Dodgson elections: Lewis Carroll's 1876 voting system is complete for parallel access to NP.J ACM 44(6):806–825MathSciNetMATHGoogle Scholar
  85. 85.
    Hemaspaandra E, Spakowski H, Vogel J (2005) The complexity of Kemeny elections.Theor Comput Sci 349:382–391MathSciNetMATHGoogle Scholar
  86. 86.
    Hemaspaandra E, Hemaspaandra L, Rothe J (2006) Hybrid elections broaden complexity-theoretic resistance to control. Proceedings of the First International Workshop on Computational Social Choice (COMSOC 2006), University of Amsterdam, pp 234–247; (2007) Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI 2007).AAAI Press, pp 1308–1314Google Scholar
  87. 87.
    Hemaspaandra E, Hemaspaandra L, Rothe J (2007) Anyone but him: the complexity of precluding an alternative.Artif Intell 171(5–6):255–285MathSciNetMATHGoogle Scholar
  88. 88.
    Homan C, Hemaspaandra L (2006) Guarantees for the success frequency of an algorithm for finding Dodgson-election winners. Proceedings of the 31st International Symposium on Mathematical Foundations of Computer Science. Lecture Notes in Computer Science, vol 4162. Springer, Berlin, pp 528–539Google Scholar
  89. 89.
    Hudry O (1989) Recherche d'ordres médians: complexité, algorithmique et problèmes combinatoires.Ph D thesis, ENST, ParisGoogle Scholar
  90. 90.
    Hudry O (2004) A note on Banks winners. In: Woeginger GJ (ed) tournaments are difficult to recognize.Soc Choice Welf 23:1–2MathSciNetGoogle Scholar
  91. 91.
    Hudry O (2008) NP-hardness results on the aggregation of linear orders into median orders.Ann Oper Res 163(1):63–88MathSciNetMATHGoogle Scholar
  92. 92.
    Hudry O (2008) NP-hardness of Slater and Kemeny problems.(submitted)Google Scholar
  93. 93.
    Hudry O (2008) A survey on the complexity of tournament solutions. Math Soc Sci (to appear)Google Scholar
  94. 94.
    Hudry O (2008) Complexity of the aggregation of binary relations.(submitted)Google Scholar
  95. 95.
    Inada K (1969) The Simple Majority Decision Rule.Econometrica 37:490–506MATHGoogle Scholar
  96. 96.
    Johnson DS (1990) A catalog of complexity classes. In: van Leeuwen J (ed) Handbook of Theoretical Computer Science Vol. A: Algorithms and Complexity.Elsevier, Amsterdam, pp 67–161Google Scholar
  97. 97.
    Johnson PE (1998) Social Choice Theory and Research, CA (Quantitative Applications in the Social Sciences Series, vol 123).Sage Publications, Thousand OaksGoogle Scholar
  98. 98.
    Jünger M (1985) Polyhedral combinatorics and the acyclic subdigraph problem.Heldermann, BerlinGoogle Scholar
  99. 99.
    Khachiyan L (1979) A polynomial algorithm in linear programming.Sov Math Dokl 20:191–194MATHGoogle Scholar
  100. 100.
    Karp RM (1972) Reducibility among combinatorial problems. In: Miller RE, Tatcher JW (eds) Complexity of computer computations.Plenum Press, New York, pp 85–103Google Scholar
  101. 101.
    Kelly JS (1987) Social Choice Theory: an Introduction.Springer, BerlinGoogle Scholar
  102. 102.
    Kemeny JG (1959) Mathematics without Numbers.Daedalus 88:571–591Google Scholar
  103. 103.
    Köhler G (1978) Choix multicritère et analyse algébrique de données ordinales. Ph D thesis, université scientifique et médicale de GrenobleGoogle Scholar
  104. 104.
    Lang J (2004) Logical preference representation and combinatorial vote.Ann Math Artif Intell 42:37–71MathSciNetMATHGoogle Scholar
  105. 105.
    Laplace (marquis de) PS (1795) Journal de l'École Polytechnique, tome II vol. 7–8; Théorie analytique des probabilités. Essai philosophique sur les probabilités. Œuvres de Laplace, tome VII, Paris, 1847Google Scholar
  106. 106.
    Laslier J-F (1997) Tournament Solutions and Majority Voting.Springer, BerlinMATHGoogle Scholar
  107. 107.
    Laslier J-F (2004) Le vote et la règle majoritaire.Analyse mathématique de la politique éditions du CNRSGoogle Scholar
  108. 108.
    LeGrand R, Markakis E, Mehta A (2006) Approval voting: local search heuristics and approximation algorithms for the minimax solution. Proceedings of the First International Workshop on Computational Social Choice (COMSOC 2006), University of Amsterdam, pp 234–247Google Scholar
  109. 109.
    Levenglick A (1975) Fair and reasonable election systems.Behav Sci 20:34–46Google Scholar
  110. 110.
    Levin J, Nalebuff B (1995) An introduction to vote-counting schemes.J Economic Perspectives 9(1):3–26Google Scholar
  111. 111.
    Lines M (1986) Approval Voting and Strategy Analysis: A Venetian.Ex Theor Decis 20:155–172MathSciNetMATHGoogle Scholar
  112. 112.
    Lhuilier S (1794) Examen du mode d'élection proposé à la Convention nationale de France en février 1793 et adopté à Genève, Genève.Reprint In: (1976) Math Sci Hum 54:7–24Google Scholar
  113. 113.
    Mascart J (1919) La vie et les travaux du chevalier Jean-Charles de Borda (1733–1799): épisodes de la vie scientifique au XVIIIe siècle. Annales de l'université de Lyon vol. II (33). New edition, Presses de l'université de Paris-Sorbonne, 2000Google Scholar
  114. 114.
    Maus S, Peters H, Storcken T (2006) Anonymous voting and minimal manipulability. Proceedings of the First International Workshop on Computational Social Choice (COMSOC 2006), University of Amsterdam, pp 317–330Google Scholar
  115. 115.
    McCabe-Dansted J (2006) Feasibility and approximability of Dodgson's rule.Master's thesis, University of AucklandGoogle Scholar
  116. 116.
    McCabe-Dansted J, Pritchard G, Slinko A (2006) Approximability of Dodgson's rule. Proceedings of the First International Workshop on Computational Social Choice (COMSOC 2006), University of Amsterdam, pp 234–247Google Scholar
  117. 117.
    Mc Garvey D (1953) A theorem on the construction of voting paradoxes.Econometrica 21:608–610MathSciNetGoogle Scholar
  118. 118.
  119. 119.
    McLean I (1995) The first golden age of social choice, 1784–1803.In: Barnett WA, Moulin H, Salles M, Schofield NJ (eds) Social choice welfare, and ethics: proceedings of the eighth international symposium in economic theory and econometrics. Cambridge University Press, Cambridge, pp 13–33Google Scholar
  120. 120.
    McLean I, Hewitt F (1994) Condorcet: Foundations of Social choice and Political Theory.Edward Elgar, HantsGoogle Scholar
  121. 121.
    McLean I, Urken A (1995) Classics of social choice.University of Michigan Press, Ann ArborGoogle Scholar
  122. 122.
    McLean I, Urken A (1997) La réception des œuvres de Condorcet sur le choix social (1794–1803): Lhuilier, Morales et Daunou, in Condorcet, Homme des Lumières et de la Révolution, Chouillet A-M, Pierre Crépel (eds) ENS éditions, Fontenay-aux-roses, pp 147–160Google Scholar
  123. 123.
    McLean I, McMillan A, Monroe BL (1995) Duncan Black and Lewis Carroll.J Theor Politics 7:107–124Google Scholar
  124. 124.
    McLean I, Lorrey H, Colomer JM (2007) Social Choice in Medieval Europe.workshop Histoire des Mathématiques Sociales, ParisGoogle Scholar
  125. 125.
    Merrill III S, Grofman B (1999) A Unified Theory of Voting.Cambridge University Press, CambridgeGoogle Scholar
  126. 126.
    Miller N (1980) A new solution set for tournaments and majority voting: Further graph-theoretical approaches to the theory of voting.Am J Political Sci 24(1):68–96Google Scholar
  127. 127.
    Mitlöhner J, Eckert D, Klamler C (2006) Simulating the effects of misperception on the manipulability of voting rules. Proceedings of the First International Workshop on Computational Social Choice (COMSOC 2006), University of Amsterdam, pp 234–247Google Scholar
  128. 128.
    Monjardet B (1976) Lhuilier contre Condorcet au pays des paradoxes.Math Sci Hum 54:33–43Google Scholar
  129. 129.
    Monjardet B (1979) Relations à éloignement minimum de relations binaires, note bibliographique.Math Sci Hum 67:115–122Google Scholar
  130. 130.
    Monjardet B (1990) Sur diverses formes de la “règle de Condorcet” d'agrégation des préférences.Math Inf Sci Hum 111:61–71MathSciNetMATHGoogle Scholar
  131. 131.
    Monjardet B (2008) Acyclic domains of linear orders: a survey. (to appear)Google Scholar
  132. 132.
    Monjardet B (2008) Mathématique Sociale and Mathematics. A case study: Condorcet's effect and medians. Electron J Hist Probab Stat 4(1):1–26MathSciNetGoogle Scholar
  133. 133.
    Monjardet B Private communicationGoogle Scholar
  134. 134.
    Moon JW (1968) Topics on tournaments.Holt, Rinehart and Winston, New YorkGoogle Scholar
  135. 135.
    Moulin H (1980) On strategy-proofness and single peakedness.Public Choice 35:437–455Google Scholar
  136. 136.
    Moulin H (1983) The Strategy of Social Choice.North Holland, AmsterdamMATHGoogle Scholar
  137. 137.
    Moulin H (1985) Fairness and strategy in voting. In: Young HP (ed) Fair Allocation, American Mathematical Society.Proc Symp Appl Math 33:109–142MathSciNetGoogle Scholar
  138. 138.
    Moulin H (1986) Choosing from a tournament.Soc Choice Welf 3:272–291MathSciNetGoogle Scholar
  139. 139.
    Morales JI (1797) Memoria matemática sobre el cálculo de la opinión en las elecciones.Imprenta Real, Madrid. Translated in: McLean I, Urken A (1995) Classics of social choice.University of Michigan Press, Ann arborGoogle Scholar
  140. 140.
    Nanson EJ (1882) Methods of Election.Trans Proc Royal Soc Victoria 18:197–240Google Scholar
  141. 141.
    Nurmi H (1987) Comparing Voting Systems.D. Reidel Publishing Company, DordrechtGoogle Scholar
  142. 142.
    Orlin J (1981) unpublishedGoogle Scholar
  143. 143.
    Pattanaik PK, Salles M (eds) (1983) Social Choice and Welfare.North-Holland, AmsterdamMATHGoogle Scholar
  144. 144.
    Poljak S, Turzík D (1986) A polynomial time heuristic for certain subgraph optimization problems with guaranteed lower bound.Discret Math 58:99–104Google Scholar
  145. 145.
    Poljak S, Rödl V, Spencer J (1988) Tournament ranking with expected profit in polynomial time.SIAM J Discret Math 1(3):372–376Google Scholar
  146. 146.
    Procaccia A, Rosenschein J (2006) Junta distribution and the average-case complexity of manipulating elections.Proceedings of the 5th International Joint Autonomous Agents and Multiagent Systems, ACM Press, pp 497–504Google Scholar
  147. 147.
    Procaccia A, Rosenschein J, Zohar A (2006) Multi-winner elections: complexity of manipulation, control, and winner-determination. Proceedings of the 8th Trading Agent Design and Analysis and Agent Mediated Electronic Commerce Joint International Workshop (TADA/AMEC 2006), pp 15–28Google Scholar
  148. 148.
    Raman V, Saurabh S (2006) Parameterized algorithms for feedback set problems and their duals in tournaments.Theor Comput Sci 351:446–458MathSciNetMATHGoogle Scholar
  149. 149.
    Reid KB (2004) Tournaments. In: Gross JL, Yellen J (eds) Handbook of Graph Theory.CRC Press, Boca Raton, pp 156–184Google Scholar
  150. 150.
    Reid KB, Beineke LW (1978) Tournaments. In: Beineke LW, Wilson RJ (eds) Selected topics in graph theory.Academic Press, London, pp 169–204Google Scholar
  151. 151.
    Reinelt G (1985) The linear ordering problem: algorithms and applications.Research and Exposition in Mathematics 8. Heldermann, BerlinGoogle Scholar
  152. 152.
    Rothe J, Spakowski H (2006) On determining Dodgson winners by frequently self-knowingly correct algorithms and in average-case polynomial time. Proceedings of the First International Workshop on Computational Social Choice (COMSOC 2006), University of Amsterdam, pp 234–247Google Scholar
  153. 153.
    Rothe J, Spakowski H, Vogel J (2003) Exact complexity of the winner problem for Young elections.Theor Comput Syst 36(4):375–386MathSciNetMATHGoogle Scholar
  154. 154.
    Rowley CK (ed) (1993) Social Choice Theory, vol 1: The Aggregation of Preferences.Edward Elgar Publishing Company, LondonGoogle Scholar
  155. 155.
    Saari D (1990) Susceptibility to manipulation.Public Choice 64:21–41Google Scholar
  156. 156.
    Saari D (2001) Decisions and Elections, Explaining the Unexpected.Cambridge University Press, CambridgeMATHGoogle Scholar
  157. 157.
    Satterthwaite M (1975) Strategy-proofness and Arrow's conditions: existence and correspondence theorems for voting procedures and social welfare functions.J Econ Theor 10:187–217MathSciNetMATHGoogle Scholar
  158. 158.
    Schwartz T (1990) Cyclic tournaments and cooperative majority voting: A solution.Soc Choice Welf 7:19–29MathSciNetMATHGoogle Scholar
  159. 159.
    Simpson PB (1969) On Defining Areas of Voter Choice.Q J Econ 83(3):478–490Google Scholar
  160. 160.
    Slater P (1961) Inconsistencies in a schedule of paired comparisons.Biometrika 48:303–312Google Scholar
  161. 161.
    Smith JH (1973) Aggregation of preferences with variable electorate.Econometrica 41(6):1027–1041MathSciNetMATHGoogle Scholar
  162. 162.
    Smith D (1999) Manipulability measures of common social choice functions.Soc Choice Welf 16:639–661MathSciNetMATHGoogle Scholar
  163. 163.
    Spencer J (1971) Optimal ranking of tournaments.Networks 1:135–138MathSciNetMATHGoogle Scholar
  164. 164.
    Spencer J (1978) Nonconstructive methods in discrete mathematics. In: Studies in Combinatorics, Rota GC (ed) Mathematical Association of America, Washington, pp 142–178Google Scholar
  165. 165.
    Spencer J (1987) Ten lectures on the probabilistic method.CBMS-NSF Regional Conference Series in Applied Mathematics N 52, SIAM, PhiladelphiaGoogle Scholar
  166. 166.
    Stearns R (1959) The voting problem.Am Math Monthly 66:761–763MathSciNetMATHGoogle Scholar
  167. 167.
    Straffin PD Jr. (1980) Topics in the Theory of Voting.Birkhäuser, BostonGoogle Scholar
  168. 168.
    Taylor AD (1995) Mathematics and Politics Strategy, Voting, Power, and Proof.Springer, BerlinMATHGoogle Scholar
  169. 169.
    Taylor AD (2005) Social Choice and the Mathematics of Manipulation.Cambridge University Press, CambridgeMATHGoogle Scholar
  170. 170.
    Tideman TN (1987) Independence of clones as criterion for voting rules.Soc Choice Welf 4:185–206MathSciNetMATHGoogle Scholar
  171. 171.
    van Zuylen A (2005) Deterministic approximation algorithms for ranking and clusterings.Cornell ORIE Tech Report No. 1431Google Scholar
  172. 172.
    Vazirani VV (2003) Approximation Algorithms.Springer, BerlinGoogle Scholar
  173. 173.
    Wakabayashi Y (1986) Aggregation of binary relations: algorithmic and polyhedral investigations.Ph D thesis, AugsburgGoogle Scholar
  174. 174.
    Wakabayashi Y (1998) The Complexity of Computing Medians of Relations.Resenhas 3(3):323–349MathSciNetMATHGoogle Scholar
  175. 175.
    Weber RJ (1995) Approval voting. J Econ Perspectives 9(1):39–49Google Scholar
  176. 176.
    Woeginger GJ (2003) Banks winner in tournaments are difficult to recognize.Soc Choice Welf 20:523–528MathSciNetMATHGoogle Scholar
  177. 177.
    Young HP (1977) Extending Condorcet's rule.J Economic Theor 16(2):335–353MATHGoogle Scholar

Books and Reviews

  1. 178.
    Aleskerov FT (1999) Arrovian Aggregation Models, Mathematical and statistical methods.Theory and decision library, vol 39.Kluwer, BostonGoogle Scholar
  2. 179.
    Aleskerov FT, Monjardet B (2002) Utility Maximisation, Choice and preference.Springer, BerlinGoogle Scholar
  3. 180.
    Baker KM (1975) Condorcet from Natural Philosophy to Social Mathematics. The University of Chicago Press, Chicago. Reissued 1982Google Scholar
  4. 181.
    Balinski M, Young HP (1982) Fair Representation.Yale University Press, New HavenGoogle Scholar
  5. 182.
    Barthélemy J-P, Monjardet B (1988) The median procedure in data analysis: new results and open problems. In: Bock HH (ed) Classification and related methods of data analysis.North Holland, AmsterdamGoogle Scholar
  6. 183.
    Batteau P, Jacquet-Lagrèze É, Monjardet B (eds) (1981) Analyse et agrégation des préférences dans les sciences économiques et de gestion. Economica, ParisGoogle Scholar
  7. 184.
    Black D (1996) Formal contributions to the theory of public choice. In: Brady GL, Tullock G (eds) The unpublished works of Duncan Black. Kluwer, BostonGoogle Scholar
  8. 185.
    Bouyssou D, Marchant T, Pirlot M, Tsoukias A, Vincke P (2006) Evaluation and decision models with multiple criteria.Springer, BerlinMATHGoogle Scholar
  9. 186.
    Campbell DE (1992) Equity, Efficiency, and Social Choice.Clarendon Press, OxfordGoogle Scholar
  10. 187.
    Coughlin P (1992) Probabilistic Voting Theory.Cambridge University Press, CambridgeGoogle Scholar
  11. 188.
    Danilov V, Sotskov A (2002) Social Choice Mechanisms.Springer, BerlinGoogle Scholar
  12. 189.
    Dubois D, Pirlot M, Bouyssou D, Prade H (eds) (2006) Concepts et méthodes pour l'aide à la décision.Hermès, ParisGoogle Scholar
  13. 190.
    Endriss U, Lang J (eds) (2006) Proceedings of the First International Workshop on Computational Social Choice, COMSOC 2006, University of AmsterdamGoogle Scholar
  14. 191.
    Enelow J, Hinich M (eds) (1990) Advances in the Spatial Theory of Voting.Cambridge University Press, CambridgeMATHGoogle Scholar
  15. 192.
    Farquharson R (1969) Theory of Voting.Yale University Press, New HavenGoogle Scholar
  16. 193.
    Feldman AM (1980) Welfare Economics and Social Choice Theory.Martinus Nijhoff, BostonGoogle Scholar
  17. 194.
    Felsenthal DS, Machover M (1998) The Measurement of Voting Power: Theory and Practise, Problems and Paradoxes.Edward Elgar, CheltenhamGoogle Scholar
  18. 195.
    Gaertner W (2001) Domains Conditions in Social Choice Theory.Cambridge University Press, CambridgeGoogle Scholar
  19. 196.
    Greenberg J (1990) The Theory of Social Situations.Cambridge University Press, CambridgeMATHGoogle Scholar
  20. 197.
    Grofman B (1981) When is the Condorcet Winner the Condorcet Winner?University of California, IrvineGoogle Scholar
  21. 198.
    Grofman B, Owen G (eds) (1986) Information Pooling and Group Decision Making.JAI Press, GreenwichGoogle Scholar
  22. 199.
    Heal G (ed) (1997) Topological Social Choice.Springer, BerlinGoogle Scholar
  23. 200.
    Hillinger C (2004) Voting and the cardinal aggregation cardinal of judgments.Discussion papers in economics 353, University of MunichGoogle Scholar
  24. 201.
    Holler MJ (ed) (1978) Power Voting and Voting Power.Physica, Wurtsburg-WienGoogle Scholar
  25. 202.
    Holler MJ, Owen G (eds) (2001) Indices and Coalition Formation.Kluwer, BostonGoogle Scholar
  26. 203.
    Kemeny J, Snell L (1960) Mathematical models in the social sciences.Ginn, BostonGoogle Scholar
  27. 204.
    Laslier J-F (2006) Spatial Approval Voting.Political Analysis 14(2):160–185Google Scholar
  28. 205.
    Laslier J-F, Van Der Straeten K (2008) A live experiment on approval voting.Exp Econ 11:97–105MATHGoogle Scholar
  29. 206.
    Lieberman B (ed) (1971) Social Choice.Gordon and Breach, New YorkGoogle Scholar
  30. 207.
    Mirkin BG (1979) Group Choice. Winston, WashingtonMATHGoogle Scholar
  31. 208.
    Moulin H (2003) Fair Division and Collective Welfare.Institute of Technology Press, BostonGoogle Scholar
  32. 209.
    Nurmi H (1999) Voting Paradoxes and how to Deal with Them.Springer, BerlinMATHGoogle Scholar
  33. 210.
    Nurmi H (2002) Voting Procedures under Uncertainty.Springer, BerlinMATHGoogle Scholar
  34. 211.
    Pattanaik PK (1971) Voting and Collective Choice.Harvard University Press, CambridgeGoogle Scholar
  35. 212.
    Pattanaik PK (1978) Strategy and Group Choice.North Holland, AmsterdamMATHGoogle Scholar
  36. 213.
    Peleg B (1984) Game Theoretic Analysis of Voting in Committes.Cambridge University Press, CambridgeGoogle Scholar
  37. 214.
    Rothschild E (2001) Economic Sentiments: Adam Smith, Condorcet, and the Enlightenment.Harvard University Press, CambridgeGoogle Scholar
  38. 215.
    Saari DG (1994) Geometry of Voting.Springer, BerlinMATHGoogle Scholar
  39. 216.
    Saari DG (1995) Basic Geometry of Voting. Springer, BerlinMATHGoogle Scholar
  40. 217.
    Saari DG (2000) Chaotic Elections! American Mathematical Society, ProvidenceGoogle Scholar
  41. 218.
    Schofield N (1984) Social Choice and Democracy.Springer, BerlinGoogle Scholar
  42. 219.
    Schofield N (ed) (1996) Collective Decision Making: Social Choice and Political Economy.Kluwer, BostonGoogle Scholar
  43. 220.
    Schwartz T (1986) The Logic of Collective Choice.Columbia University Press, New YorkGoogle Scholar
  44. 221.
    Sen AK (1979) Collective Choice and Social Welfare.North Holland, AmsterdamGoogle Scholar
  45. 222.
    Sen AK (1982) Choice, Welfare and Measurement.Basil Blackwell, OxfordMATHGoogle Scholar
  46. 223.
    Suzumura K (1984) Rational Choice, Collective Decisions and Social Welfare.Cambridge University Press, CambridgeGoogle Scholar
  47. 224.
    Tanguiane AS (1991) Aggregation and Representation of Preferences, Introduction to Mathematical Theory of Democracy.Springer, BerlinGoogle Scholar
  48. 225.
    Tideman N (2006) Collective Decisions and Voting: The Potential for Public Choice.Ashgate, BurlingtonGoogle Scholar
  49. 226.
    Woodall DR (1997) Monotonicity of single-seat preferential election rules.Discret Appl Math 77:81–98MathSciNetMATHGoogle Scholar
  50. 227.
    Young HP (1974) An Axiomatization of Borda's Rule.J Econ Theor 9:43–52Google Scholar
  51. 228.
    Young HP (1986) Optimal ranking and choice from pairwise comparisons. In: Grofman B, Owen G (eds) Information pooling and group decision making. JAI Press, Greenwich, pp 113–122Google Scholar
  52. 229.
    Young HP (1988) Condorcet Theory of Voting.Am Political Sci Rev 82:1231–1244Google Scholar
  53. 230.
    Young HP (1995) Optimal voting rules.J Econ Perspect 9(1):51–64Google Scholar
  54. 231.
    Young HP, Levenglick A (1978) A Consistent Extension of Condorcet's Election Principle.SIAM J Appl Math 35:285–300MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Olivier Hudry
    • 1
  1. 1.École Nationale Supérieure des TélécommunicationsParisFrance