Computational Complexity

2012 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Branching Processes

  • Mikko J. Alava
  • Kent Bækgaard Lauritsen
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-1800-9_19

Article Outline

Glossary

Definition of the Subject

Introduction

Branching Processes

Self-Organized Branching Processes

Scaling and Dissipation

Network Science and Branching Processes

Conclusions

Future Directions

Acknowledgments

Bibliography

Keywords

Asymptotic Form Acoustic Emission Event Tauberian Theorem Sandpile Model Branching Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

We are grateful to our colleague Stefano Zapperi with whom we have collaborated on topics related to networks, avalanches, and branchingprocesses. This work was supported by the Academy of Finland through the Center of Excellence program (M.J.A.) and EUMETSAT's GRAS Satellite ApplicationFacility (K.B.L.).

Bibliography

Primary Literature

  1. 1.
    Harris TE (1989) The Theory of Branching Processes.Dover, New YorkGoogle Scholar
  2. 2.
    Kimmel M, Axelrod DE (2002) Branching Processes in Biology.Springer, New YorkzbMATHGoogle Scholar
  3. 3.
    Athreya KB, Ney PE (2004) Branching Processes.Dover Publications, Inc., MineolaGoogle Scholar
  4. 4.
    Haccou P, Jagers P, Vatutin VA (2005) Branching Processes: Variation, Growth, and Extinction of Populations.Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar
  5. 5.
    Manna SS (1991) J Phys A 24:L363.In this two‐state model, the energy takes the two stable values, \( { z_i=0 } \) (empty) and \( { z_i=1 } \) (particle). When \( { z_i \ge z_\mathrm{c} } \), with \( { z_\mathrm{c}=2 } \), the site relaxes by distributing two particles to two randomly chosen neighborsGoogle Scholar
  6. 6.
    Dickman R, Alava MJ, Munoz MA, Peltola J, Vespignani A, Zapperi S (2001) Phys Rev E64:056104Google Scholar
  7. 7.
    Bak P, Tang C, Wiesenfeld K (1987) Phys Rev Lett 59:381; (1988) Phys Rev A 38:364Google Scholar
  8. 8.
    Tebaldi C, De Menech M, Stella AL (1999) Phys Rev Lett 83:3952CrossRefGoogle Scholar
  9. 9.
    Stella AL, De Menech M (2001) Physica A 295:1001CrossRefGoogle Scholar
  10. 10.
    Vespignani A, Dickman R, Munoz MA, Zapperi S (2000) Phys Rev E 62:4564CrossRefGoogle Scholar
  11. 11.
    Dickman R, Munoz MA, Vespignani A, Zapperi S (2000) Braz J Phys 30:27CrossRefGoogle Scholar
  12. 12.
    Alava M (2003) Self‐Organized Criticality as a Phase Transition. In: Korutcheva E, Cuerno R (eds) Advances in Condensed Matter and Statistical Physics.arXiv:cond-mat/0307688,(2004) Nova Publishers, p 45Google Scholar
  13. 13.
    Lubeck S (2004) Int J Mod Phys B18:3977Google Scholar
  14. 14.
    Jensen HJ (1998) Self‐Organized Criticality.Cambridge University Press, CambridgezbMATHGoogle Scholar
  15. 15.
    Alava MJ, Nukala PKNN, Zapperi S (2006) Statistical models of fracture.Adv Phys 55:349–476CrossRefGoogle Scholar
  16. 16.
    Albert R, Barabási AL (2002) Statistical mechanics of complex networks.Rev Mod Phys 74:47Google Scholar
  17. 17.
    Dorogovtsev SN, Mendes JFF (2003) Evolution of Networks: From Biological Nets to the Internet and WWW.Oxford University Press, Oxford; (2002) Adv Phys 51:1079; (2004) arXiv:cond-mat/0404593Google Scholar
  18. 18.
    Bonachela JA, Chate H, Dornic I, Munoz MA (2007) Phys Rev Lett 98:115702CrossRefGoogle Scholar
  19. 19.
    Feller W (1971) An Introduction to Probability Theory and its Applications. vol 2, 2nd edn. Wiley, New YorkzbMATHGoogle Scholar
  20. 20.
    Asmussen S, Hering H (1983) Branching Processes.Birkhäuser, BostonzbMATHGoogle Scholar
  21. 21.
    Weiss GH (1994) Aspects and Applications of the Random Walk. North‐Holland, Amsterdam zbMATHGoogle Scholar
  22. 22.
    Tang C, Bak P (1988) J Stat Phys 51:797MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Dhar D, Majumdar SN (1990) J Phys A 23:4333MathSciNetCrossRefGoogle Scholar
  24. 24.
    Janowsky SA, Laberge CA (1993) J Phys A 26:L973MathSciNetCrossRefGoogle Scholar
  25. 25.
    Flyvbjerg H, Sneppen K, Bak P (1993) Phys Rev Lett 71:4087; de Boer J, Derrida B, Flyvbjerg H, Jackson AD, Wettig T (1994) Phys Rev Lett 73:906Google Scholar
  26. 26.
    Alstrøm P (1988) Phys Rev A 38:4905Google Scholar
  27. 27.
    Christensen K, Olami Z (1993) Phys Rev E 48:3361CrossRefGoogle Scholar
  28. 28.
    García-Pelayo R (1994) Phys Rev E 49:4903Google Scholar
  29. 29.
    Zapperi S, Lauritsen KB, Stanley HE (1995) Phys Rev Lett 75:4071CrossRefGoogle Scholar
  30. 30.
    Manna SS, Kiss LB, Kertész J (1990) J Stat Phys 61:923Google Scholar
  31. 31.
    Tadić B, Nowak U, Usadel KD, Ramaswamy R, Padlewski S (1992) Phys Rev A 45:8536Google Scholar
  32. 32.
    Tadic B, Ramaswamy R (1996) Phys Rev E 54:3157CrossRefGoogle Scholar
  33. 33.
    Vespignani A, Zapperi S, Pietronero L (1995) Phys Rev E 51:1711CrossRefGoogle Scholar
  34. 34.
    Lauritsen KB, Zapperi S, Stanley HE (1996) Phys Rev E 54:2483CrossRefGoogle Scholar
  35. 35.
    Newman MEJ (2003) The structure and function of complex networks.SIAM Rev 45:167MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Yook SH, Jeong H, Barabasi AL, Tu Y (2001) Phys Rev Lett 86:5835CrossRefGoogle Scholar
  37. 37.
    Barrat A, Barthelemy M, Pastor-Satorras R, Vespignani A (2004) Proc Natl Acad Sci USA 101:3747CrossRefGoogle Scholar
  38. 38.
    Barrat A, Barthelemy M, Vespignani A (2004) Phys Rev Lett 92:228701CrossRefGoogle Scholar
  39. 39.
    Pastor-Satorras R, Vespignani A (2001) Phys Rev Lett 86:3200CrossRefGoogle Scholar
  40. 40.
    Dorogovtsev SN, Goltsev AV, Mendes JFF (2007) arXiv:cond-mat/0750.0110Google Scholar
  41. 41.
    Pastor-Satorras R, Vespignani A (2004) Evolution and Structure of the Internet: A Statistical Physics Approach.Cambridge University Press, CambridgeCrossRefGoogle Scholar
  42. 42.
    Vazquez A, Balazs R, Andras L, Barabasi AL (2007) Phys Rev Lett 98:158702CrossRefGoogle Scholar
  43. 43.
    Colizza V, Barrat A, Barthelemy M, Vespignani A (2006) PNAS 103:2015CrossRefGoogle Scholar
  44. 44.
    Vazquez A (2006) Phys Rev Lett 96:038702CrossRefGoogle Scholar
  45. 45.
    Kim BJ, Trusina A, Minnhagen P, Sneppen K (2005) Eur Phys J B43:369Google Scholar
  46. 46.
    Alava MJ, Dorogovtsev SN (2005) Phys Rev E 71:036107CrossRefGoogle Scholar
  47. 47.
    Hui Z, Zi-You G, Gang Y, Wen-Xu W (2006) Chin Phys Lett 23:275CrossRefGoogle Scholar
  48. 48.
    Ogata Y (1988) J Am Stat Assoc 83:9CrossRefGoogle Scholar
  49. 49.
    Saichev A, Helmstetter A, Sornette D (2005) Pure Appl Geophys 162:1113CrossRefGoogle Scholar
  50. 50.
    Lippidello E, Godano C, de Arcangelis L (2007) Phys Rev Lett 98:098501CrossRefGoogle Scholar
  51. 51.
    Zapperi S, Castellano C, Colaiori F, Durin G (2005) Nat Phys 1:46CrossRefGoogle Scholar

Books and Reviews

  1. 60.
    Albert R, Barabási AL (2002) Statistical mechanics of complex networks.Rev Mod Phys 74:47Google Scholar
  2. 58.
    Asmussen S, Hering H (1883) Branching Processes. Birkhäuser, BostonGoogle Scholar
  3. 54.
    Athreya KB, Ney PE (2004) Branching Processes. Dover Publications, Inc., MineolaGoogle Scholar
  4. 57.
    Feller W (1971) An Introduction to Probability Theory and its Applications. vol 2, 2nd edn.Wiley, New YorkzbMATHGoogle Scholar
  5. 55.
    Haccou P, Jagers P, Vatutin VA (2005) Branching Processes: Variation, Growth, and Extinction of Populations.Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar
  6. 52.
    Harris TE (1989) The Theory of Branching Processes.Dover, New YorkGoogle Scholar
  7. 56.
    Jensen HJ (1998) Self‐Organized Criticality. Cambridge University Press, CambridgezbMATHGoogle Scholar
  8. 53.
    Kimmel M, Axelrod DE (2002) Branching Processes in Biology.Springer, New YorkzbMATHGoogle Scholar
  9. 62.
    Newman MEJ (2003) The structure and function of complex networks.SIAM Rev 45:167MathSciNetzbMATHCrossRefGoogle Scholar
  10. 59.
    Weiss GH (1994) Aspects and Applications of the Random Walk. North‐Holland, AmsterdamzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Mikko J. Alava
    • 1
  • Kent Bækgaard Lauritsen
    • 2
  1. 1.Department of Engineering PhysicsEspoo University of TechnologyEspooFinland
  2. 2.Research DepartmentDanish Meteorological InstituteCopenhagenDenmark