Computational Complexity

2012 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Bivariate (Two-dimensional) Wavelets

Reference work entry

Article Outline




Bivariate Refinable Functions and Their Properties

The Projection Method

Bivariate Orthonormal and Biorthogonal Wavelets

Bivariate Riesz Wavelets

Pairs of Dual Wavelet Frames

Future Directions



Wavelet Coefficient Subdivision Scheme Wavelet Frame Biorthogonal Wavelet Refinable Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


Primary Literature

  1. 1.
    Ayache A (2001) Some methods for constructing nonseparable, orthonormal, compactly supported wavelet bases. Appl Comput Harmon Anal 10:99–111MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Belogay E, Wang Y (1999) Arbitrarily smooth orthogonal nonseparable wavelets in \( { \mathbb{R}^2 } \). SIAM J Math Anal 30:678–697MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Carnicer JM, Dahmen W, Peña JM (1996) Local decomposition of refinable spaces and wavelets. Appl Comput Harmon Anal 3:127–153Google Scholar
  4. 4.
    Cavaretta AS, Dahmen W, Micchelli CA (1991) Stationary subdivision. Mem Amer Math Soc 93(453)1–186MathSciNetGoogle Scholar
  5. 5.
    Chen DR, Han B, Riemenschneider SD (2000) Construction of multivariate biorthogonal wavelets with arbitrary vanishing moments. Adv Comput Math 13:131–165MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Chui CK (1992) An introduction to wavelets. Academic Press, BostonzbMATHGoogle Scholar
  7. 7.
    Chui CK, He W, Stöckler J (2002) Compactly supported tight and sibling frames with maximum vanishing moments. Appl Comput Harmon Anal 13:224–262Google Scholar
  8. 8.
    Cohen A (2003) Numerical analysis of wavelet methods. North-Holland, AmsterdamzbMATHGoogle Scholar
  9. 9.
    Cohen A, Daubechies I (1993) Nonseparable bidimensional wavelet bases. Rev Mat Iberoamericana 9:51–137MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Cohen A, Daubechies I (1996) A new technique to estimate the regularity of refinable functions. Rev Mat Iberoamericana 12:527–591MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Cohen A, Daubechies I, Feauveau JC (1992) Biorthogonal bases of compactly supported wavelets. Comm Pure Appl Math 45:485–560MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Cohen A, Gröchenig K, Villemoes LF (1999) Regularity of multivariate refinable functions. Constr Approx 15:241–255Google Scholar
  13. 13.
    Cohen A, Schlenker JM (1993) Compactly supported bidimensional wavelet bases with hexagonal symmetry. Constr Approx 9:209–236MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Dahmen W (1997) Wavelet and multiscale methods for operator equations. Acta Numer 6:55–228MathSciNetCrossRefGoogle Scholar
  15. 15.
    Daubechies I (1988) Orthonormal bases of compactly supported wavelets. Comm Pure Appl Math 41:909–996MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Daubechies I (1992) Ten Lectures on Wavelets, CBMS-NSF Series. SIAM, PhiladelphiaCrossRefGoogle Scholar
  17. 17.
    Daubechies I, Han B (2004) Pairs of dual wavelet frames from any two refinable functions. Constr Approx 20:325–352MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Daubechies I, Han B, Ron A, Shen Z (2003) Framelets: MRA-based constructions of wavelet frames. Appl Comput Harmon Anal 14:1–46MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Dahlke S, Gröchenig K, Maass P (1999) A new approach to interpolating scaling functions. Appl Anal 72:485–500Google Scholar
  20. 20.
    de Boor C, Hollig K, Riemenschneider SD (1993) Box splines. Springer, New YorkzbMATHCrossRefGoogle Scholar
  21. 21.
    DeRose T, Forsey DR, Kobbelt L, Lounsbery M, Peters J, Schröder P, Zorin D (1998) Subdivision for Modeling and Animation, (course notes)Google Scholar
  22. 22.
    Dyn N, Levin D (2002) Subdivision schemes in geometric modeling. Acta Numer 11:73–144MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Dyn N, Gregory JA, Levin D (1990) A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans Graph 9:160–169zbMATHCrossRefGoogle Scholar
  24. 24.
    Han B (1997) On dual wavelet tight frames. Appl Comput Harmon Anal 4:380–413MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Han B (2000) Analysis and construction of optimal multivariate biorthogonal wavelets with compact support. SIAM Math Anal 31:274–304zbMATHCrossRefGoogle Scholar
  26. 26.
    Han B (2001) Approximation properties and construction of Hermite interpolants and biorthogonal multiwavelets. J Approx Theory 110:18–53MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Han B (2002) Symmetry property and construction of wavelets with a general dilation matrix. Lin Algeb Appl 353:207–225zbMATHCrossRefGoogle Scholar
  28. 28.
    Han B (2002) Projectable multivariate refinable functions and biorthogonal wavelets. Appl Comput Harmon Anal 13:89–102MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Han B (2003) Computing the smoothness exponent of a symmetric multivariate refinable function. SIAM J Matrix Anal Appl 24:693–714MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Han B (2003) Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix. J Comput Appl Math 155:43–67MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Han B (2003) Vector cascade algorithms and refinable function vectors in Sobolev spaces. J Approx Theory 124:44–88MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Han B (2004) Symmetric multivariate orthogonal refinable functions. Appl Comput Harmon Anal 17:277–292MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Han B (2006) On a conjecture about MRA Riesz wavelet bases. Proc Amer Math Soc 134:1973–1983MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Han B (2006) The projection method in wavelet analysis. In: Chen G, Lai MJ (eds) Modern Methods in Mathematics. Nashboro Press, Brentwood, pp. 202–225Google Scholar
  35. 35.
    Han B (2008) Construction of wavelets and framelets by the projection method. Int J Appl Math Appl 1:1–40zbMATHGoogle Scholar
  36. 36.
    Han B, Jia RQ (1998) Multivariate refinement equations and convergence of subdivision schemes. SIAM J Math Anal 29:1177–1199MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Han B, Jia RQ (1999) Optimal interpolatory subdivision schemes in multidimensional spaces. SIAM J Numer Anal 36:105–124MathSciNetCrossRefGoogle Scholar
  38. 38.
    Han B, Jia RQ (2002) Quincunx fundamental refinable functions and quincunx biorthogonal wavelets. Math Comp 71:165–196MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Han B, Jia RQ (2006) Optimal C 2 two-dimensional interpolatory ternary subdivision schemes with two-ring stencils. Math Comp 75:1287–1308MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Han B, Jia RQ (2007) Characterization of Riesz bases of wavelets generated from multiresolution analysis. Appl Comput Harmon Anal 23:321–345MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Han B, Shen Z (2005) Wavelets from the Loop scheme. J Fourier Anal Appl 11:615–637MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Han B, Shen Z (2006) Wavelets with short support. SIAM J Math Anal 38:530–556MathSciNetCrossRefGoogle Scholar
  43. 43.
    Ji H, Riemenschneider SD, Shen Z (1999) Multivariate compactly supported fundamental refinable functions, duals, and biorthogonal wavelets. Stud Appl Math 102:173–204MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Jia RQ (1998) Approximation properties of multivariate wavelets. Comp Math 67:647–665zbMATHCrossRefGoogle Scholar
  45. 45.
    Jia RQ (1999) Characterization of smoothness of multivariate refinable functions in Sobolev spaces. Trans Amer Math Soc 351:4089–4112MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Jia RQ, Micchelli CA (1991) Using the refinement equation for the construction of pre-wavelets II: Power of two. In: Laurent PJ, Le Méhauté A, Schumaker LL (eds) Curves and Surfaces. Academic Press, New York, pp. 209–246Google Scholar
  47. 47.
    Jia RQ, Wang JZ, Zhou DX (2003) Compactly supported wavelet bases for Sobolev spaces. Appl Comput Harmon Anal 15:224–241MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Jiang QT (1998) On the regularity of matrix refinable functions. SIAM J Math Anal 29:1157–1176MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Khodakovsky A, Schröder P, Sweldens W (2000) Progressive geometry compression. Proc SIGGRAPHGoogle Scholar
  50. 50.
    Kovačević J, Vetterli M (1992) Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for \( { \mathbb{R}^n } \). IEEE Trans Inform Theory 38:533–555Google Scholar
  51. 51.
    Lai MJ (2006) Construction of multivariate compactly supported orthonormal wavelets. Adv Comput Math 25:41–56MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Lai MJ, Stöckler J (2006) Construction of multivariate compactly supported tight wavelet frames. Appl Comput Harmon Anal 21:324–348Google Scholar
  53. 53.
    Lawton W, Lee SL, Shen Z (1997) Stability and orthonormality of multivariate refinable functions. SIAM J Math Anal 28:999–1014MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Lawton W, Lee SL, Shen Z (1998) Convergence of multidimensional cascade algorithm. Numer Math 78:427–438MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Le Pennec E, Mallat S (2005) Sparse geometric image representations with bandelets. IEEE Trans Image Process 14:423–438MathSciNetCrossRefGoogle Scholar
  56. 56.
    Lorentz R, Oswald P (2000) Criteria for hierarchical bases in Sobolev spaces. Appl Comput Harmon Anal 8:32–85MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Maass P (1996) Families of orthogonal two-dimensional wavelets. SIAM J Math Anal 27:1454–1481MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Mallat S (1998) A wavelet tour of signal processing. Academic Press, San DiegozbMATHGoogle Scholar
  59. 59.
    Riemenschneider SD, Shen Z (1997) Multidimensional interpolatory subdivision schemes. SIAM J Numer Anal 34:2357–2381MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Riemenschneider SD, Shen ZW (1992) Wavelets and pre-wavelets in low dimensions. J Approx Theory 71:18–38MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Ron A, Shen Z (1997) Affine systems in \( { L_2(\mathbb{R}^d) } \): the analysis of the analysis operator. J Funct Anal 148:408–447MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Ron A, Shen Z (1997) Affine systems in \( L_2(\mathbb{R}^d) \) II: dual systems. J Fourier Anal Appl 3:617–637MathSciNetCrossRefGoogle Scholar
  63. 63.
    Sweldens W (1996) The lifting scheme: a custom-design construction of biorthogonal wavelets. Appl Comput Harmon Anal 3:186–200MathSciNetzbMATHCrossRefGoogle Scholar

Books and Reviews

  1. 64.
    Cabrelli C, Heil C, Molter U (2004) Self-similarity and multiwavelets in higher dimensions. Mem Amer Math Soc 170(807):1–82MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Bin Han
    • 1
  1. 1.Department of Mathematical and Statistical SciencesUniversity of AlbertaEdmontonCanada