Computational Complexity

2012 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Rough Sets: Foundations and Perspectives

  • James F. Peters
  • Andrzej Skowron
  • Jarosław Stepaniuk
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-1800-9_169

Article Outline

Glossary

Definition of the Subject

Introduction

Approximation Spaces

Rough Sets

Dimensionality Reduction

Summary

Future Directions

Acknowledgments

Bibliography

Keywords

Entropy Acoustics 
This is a preview of subscription content, log in to check access

Notes

Acknowledgments

The research has been supported by the grant fromMinistry of Scientific Research and Information Technology of theRepublic of Poland and by grant 185986 from the Natural Sciencesand Engineering Research Council of Canada (NSERC).

Bibliography

Primary Literature

  1. 1.
    Audi R (1999)The Cambridge Dictionary of Philosophy, 2nd edn.Cambridge University Press, UKGoogle Scholar
  2. 2.
    Banerjee M, Chakraborty MK (2004)Algebras from rough sets. In: Pal SK, Polkowski L, Skowron A (eds)Rough-Neural Computing. Techniques for Computing with Words.Springer, Berlin, pp 157–184CrossRefGoogle Scholar
  3. 3.
    Bazan J (1998) A Comparison of Dynamic and Non-dynamic Rough Set Methods for ExtractingLaws from Decision Tables. In: Polkowski L, Skowron A (eds) Rough Sets in Knowledge Discovery 1:Methodology and Applications. Studies in Fuzziness and Soft Computing, vol 18.Physica, Heidelberg,pp 321–365Google Scholar
  4. 4.
    Bazan J (2008)Rough sets and granular computing in behavioral pattern identification and planningIn: Pedrycz W, Skowron A, Kreinovich V (eds) Handbook of Granular Computing.Wiley, New York (in press), pp 777–799Google Scholar
  5. 5.
    Bazan J, Skowron A, Swiniarski R (2006)Rough sets and vague concept approximation: From sample approximation to adaptive learning.Transactions on Rough Sets V. Lecture Notes in Computer Science, vol 4100.Springer, Heidelberg, pp 39–62Google Scholar
  6. 6.
    Bazan J, Kruczek P, Bazan-Socha S, Skowron A, Pietrzyk JJ (2006) Automatic planning oftreatment of infants with respiratory failure through rough set modeling. In: Greco S, Hato Y,Hirano S, Inuiguchi M, Miyamoto S, Nguyen HS, Słowiński R (eds) Proceedings of the 5thInternational Conference on Rough Sets and Current Trends in Computing, RSCTC 2006, Kobe, Japan,6–8 November. Lecture Notes in Artificial Intelligence, vol 4259. Springer, Heidelberg,pp 418–427Google Scholar
  7. 7.
    Bianucci D, Cattaneo G, Ciucci D (2007)Entropies and co-entropies of coverings with application to incomplete information systems.Fundam Inform 75:77–105MathSciNetMATHGoogle Scholar
  8. 8.
    Cattaneo G, Ciucci D (2004)Algebraic structures for rough sets. Transactions on Rough Sets II. LNCS(Lecture Notes in Artificial Intelligence), vol 3135.Springer, Heidelberg, pp 63–101Google Scholar
  9. 9.
    Chakraborty MK, Banerjee M (2007)Rough dialogue and implication lattices.Fundam Inform 75:123–139MathSciNetMATHGoogle Scholar
  10. 10.
    Devlin J (1993)The Joy of Sets.Fundamentals of Contemporary Set Theory.Springer, BerlinMATHGoogle Scholar
  11. 11.
    Düntsch I (1997)A logic for rough sets.Theor Comput Sci 179:427–436Google Scholar
  12. 12.
    Frege G (1879)Begriffsschrift: eine der arithmetischen nachgebildete Formelsprachedes reinen Denkens. Nebert, HalleGoogle Scholar
  13. 13.
    Friedman JH, Hastie T, Tibshirani R (2001)The Elements of Statistical Learning: Data Mining, Inference, and Prediction.Springer, HeidelbergMATHGoogle Scholar
  14. 14.
    Gomolińska A (2005)Rough validity, confidence, and coverage of rules in approximation spaces.Transactions on Rough Sets III.LNCS (Lecture Notes in Artificial Intelligence), vol 3400.Springer, Heidelberg, pp 57–81Google Scholar
  15. 15.
    Greco S, Matarazzo B, Słowiński R (2001)Rough sets theory for multicriteria decision analysis.Eur J Oper Res 129:1–47Google Scholar
  16. 16.
    Greco S, Słowiński R, Stefanowski J, Zurawski M (2005)Incremental vs. non-incremental rule induction for multicriteria classification.Transactions on Rough Sets II.LNCS (Lecture Notes in Artificial Intelligence), vol 3135.Springer, Heidelberg, pp 33–53Google Scholar
  17. 17.
    Grzymała-Busse JW (1992) LERS – A system for learning from examples based on roughsets In: Słowiński R (ed) Intelligent Decision Support – Handbook of Applications and Advancesof the Rough Sets Theory, System Theory, Knowledge Engineering and Problem Solving, vol 11.Kluwer, Dordrecht, pp 3–18Google Scholar
  18. 18.
    Grzymała-Busse JW, Grzymała-Busse WJ (2007)An experimental comparison of three rough set approaches to missing attribute values.Transactions on Rough Sets VI.LNCS (Lecture Notes in Artificial Intelligence), vol 4374.Springer, Heidelberg, pp 31–50Google Scholar
  19. 19.
    Henry C, Peters JF (2007)Image Pattern Recognition Using Approximation Spaces and Near Sets.In: Proceedings of Eleventh International Conference on RoughSets, Fuzzy Sets, Data Mining and Granular Computing. Joint Rough Set Symposium.Lecture Notes in Artificial Intelligence, vol 4482.Springer, Berlin, pp 475–482CrossRefGoogle Scholar
  20. 20.
    Int. Rough Set Society website:www.roughsets.org
  21. 21.
    Jankowski A, Skowron A (2007)Logic for Artificial Intelligence: The Rasiowa – Pawlak School Perspective. In:Ehrenfeucht A, Marek V, Srebrny M (eds) Andrzej Mostowski and Foundational Studies.IOS Press, Amsterdam, pp 106–143Google Scholar
  22. 22.
    Jankowski A, Skowron A (2008)Wisdom Granular Computing. In: Pedrycz W, Skowron A, Kreinovich V (eds)Handbook of Granular Computing.Wiley, New York, pp 329–345CrossRefGoogle Scholar
  23. 23.
    Järvinen J (2007)Lattice theory for rough sets. Transactions on Rough Sets VI.LNCS (Lecture Notes in Artificial Intelligence), vol 4374.Springer, Heidelberg, pp 400–496Google Scholar
  24. 24.
    Keats J (1820)Lamia, Isabella, The Eve of St. Agness, and Other Poems.Taylor and Hessey, LondonGoogle Scholar
  25. 25.
    Konrad E, Orłowska E, Pawlak Z (1981)Knowledge Representation Systems. Definability of Informations.Prace IPI Pan, ICS PAS Report, vol 433 April.Institute of Computer Science,Polish Academy of Sciences, WarsawGoogle Scholar
  26. 26.
    Leśniewski S (1929)Grungzüge eines neuen Systems der Grundlagen der Mathematik.Fundam Math pp 14:1–81Google Scholar
  27. 27.
    Lockery D, Peters JF (2007) Robotic Target Tracking with Approximation Space-basedFeedback During Reinforcement Learning, Springer best paper award.In: Proceedings of EleventhInternational Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. JointRough Set Symposium.Lecture Notes in Artificial Intelligence, vol 4482. Springer, Berlin, pp 483–490Google Scholar
  28. 28.
    Łukasiewicz J (1913)Die logischen Grundlagen der Wahrscheinlichkeitsrechnung.In: Borkowski L (ed) Jan Łukasiewicz – Selected Works.North Holland, Amsterdam; (1970)Polish Scientific Publishers, Warsaw, pp 16–63Google Scholar
  29. 29.
    Murray JA, Bradley H, Craigie W, Onions C (1933)The Oxford English Dictionary.Oxford University Press, LondonGoogle Scholar
  30. 30.
    Nguyen HS (2006)Approximate boolean reasoning: Foundations and applications in data mining.Transactions on Rough Sets V.LNCS (Lecture Notes in Artificial Intelligence), vol 4100.Springer, Heidelberg, pp 344–523Google Scholar
  31. 31.
    Nguyen SH, Bazan J, Skowron A, Nguyen HS (2004)Layered learning for concept synthesis, Transactions on Rough Sets I.LNCS (Lecture Notes in Artificial Intelligence), vol 3100.Springer, Heidelberg, pp 187–208 Google Scholar
  32. 32.
    Pal SK, Polkowski L, Skowron A (2004)Rough-Neural Computing.Techniques for Computing with Words.Springer, BerlinMATHCrossRefGoogle Scholar
  33. 33.
    Orłowska E (1985)Semantics of Vague Concepts. In: Dorn G, Weingartner P (eds)Foundations of Logic and Linguistics. Problems and Solutions.Plenum, London, pp 465–482Google Scholar
  34. 34.
    Orłowska E (1985)A logic of indiscernibility relations.Lecture Notes in Computer Science, vol 208.Springer, Berlin, pp 177–186Google Scholar
  35. 35.
    Pal SK, Polkowski L, Skowron A (2004)Rough-Neural Computing: Techniques for Computing with Words.Springer, BerlinMATHCrossRefGoogle Scholar
  36. 36.
    Pawlak Z (1973)Mathematical foundations of information retrieval.Proceedings of Symposium of Mathematical Foundations of ComputerScience, 3–8 September, High Tartras, pp. 135–136. See also:Mathematical Foundations of Information Retrieval. Computation Center,Polish Academy of Sciences, Research Report CC PAS Report 101, WarsawGoogle Scholar
  37. 37.
    Pawlak Z (1981)Classification of objects by means of attributes.Institute for Computer Science, Polish Academy of Sciences.Research Report CC PAS Report 429, Warsaw Google Scholar
  38. 38.
    Pawlak Z (1991)Rough Sets. Theoretical Aspects of Reasoning about Data.Kluwer, DordrechtMATHGoogle Scholar
  39. 39.
    Pawlak Z (1995)On rough derivatives, rough integrals, and rough differential equations,ICS Research Report 41/95.Institute of Computer Science, WarsawGoogle Scholar
  40. 40.
    Pawlak Z, Skowron A (2007)Rudiments of rough sets. Information Sciences.Int J 177(1): 3–27;Rough sets: Some extensions. Information Sciences.Int J 177(1): 28–40;Rough sets and Boolean reasoning. Information Sciences.Int J 177(1):41–73MathSciNetMATHGoogle Scholar
  41. 41.
    Peters JF (2008)Classification of perceptual objects by means of features.Int J Inf Technol Intell Comput 3(2):1–35Google Scholar
  42. 42.
    Peters JF, Henry C (2007)Approximation spaces in off-policy Monte Carlo learning.Engineering Applications of Artificial Intelligence.Int J Intell Real-Time Autom 20(5):667–675 Google Scholar
  43. 43.
    Peters JF, Henry C, Gunderson DS (2006)Biologically-inspired approximate adaptive learningcontrol strategies: A rough set approach.Inter J Hybrid Intell Syst 3:1–14Google Scholar
  44. 44.
    Peters JF, Skowron A, Stepaniuk J (2007) Nearness of Objects: Extension of Approximation Space Model.Fundam Inform 79(3–4):497–512MathSciNetMATHGoogle Scholar
  45. 45.
    Polkowski L (2002)Rough Sets: Mathematical Foundations.Advances in Soft Computing.Physica, HeidelbergGoogle Scholar
  46. 46.
    Polkowski L, Skowron A (1996)Rough mereology: A new paradigm for approximate reasoning.J Approx Reas 15(4):333–365MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Polkowski L, Skowron A (1998)Rough Sets in Knowledge Discovery 1:Methodology and Applications. Studies in Fuzziness and Soft Computing, vol 18.Physica, HeidelbergGoogle Scholar
  48. 48.
    Polkowski L, Skowron A (1998)Rough Sets in Knowledge Discovery 2: Applications, Case Studies and Software Systems. Studies in Fuzziness and Soft Computing, vol 19.Physica, HeidelbergGoogle Scholar
  49. 49.
    Rissanen J (1985)Minimum-description-length Principle. In: Kotz S, Johnson N (eds)Encyclopedia of Statistical Sciences.Wiley, New York, pp 523–527Google Scholar
  50. 50.
    Rough Set Database:http://rsds.univ.rzeszow.pl/
  51. 51.
    Skowron A, Grzymała-Busse JW (1994)From Rough Set Theory to Evidence Theory. In: Yager R, Fedrizzi M,Kacprzyk J (eds) Advances in the Dempster-Shafer Theory of Evidence.Wiley, New York, pp 193–236Google Scholar
  52. 52.
    Skowron A, Peters JF (2008)Rough-granular computing.In: Pedrycz W, Skowron A, Kreinovich V (eds) Handbook of Granular Computing.Wiley, pp 285–328Google Scholar
  53. 53.
    Skowron A, Rauszer C (1992) The Discernibility Matrices and Functions in InformationSystems. In: Słowiński R (ed) Intelligent Decision Support – Handbook of Applications andAdvances of the Rough Sets Theory, System Theory, Knowledge Engineering and Problem Solving, vol 11.Kluwer, Dordrecht, pp 331–362Google Scholar
  54. 54.
    Skowron A, Stepaniuk J (1996)Tolerance approximation spaces.Fundam Inform 27:245–253MathSciNetMATHGoogle Scholar
  55. 55.
    Skowron A, Swiniarski R, Synak P (2005)Approximation spaces and information granulation. Transactions on Rough Sets III.LNCS (Lecture Notes in Artificial Intelligence), vol 3400.Springer, Heidelberg, pp 175–189Google Scholar
  56. 56.
    Skowron A, Stepaniuk J, Peters JF, Swiniarski R (2006)Calculi of approximation spaces.Fundam Inform 72(1–3):363–378MathSciNetMATHGoogle Scholar
  57. 57.
    Stepaniuk J (1998) Approximation spaces, reducts and representatives. In: Polkowski L,Skowron A (eds) Rough Sets in Knowledge Discovery 2: Applications, Case Studies and SoftwareSystems, Studies in Fuzziness and Soft Computing, vol 19.Physica, Heidelberg, pp 109–126Google Scholar
  58. 58.
    Stepaniuk J (2000) Knowledge discovery by application of rough set models. In:Polkowski L, Tsumoto S, Lin TY (eds) Rough Set Methods and Applications.New Developments inKnowledge Discovery in Information Systems.Physica, Heidelberg, pp 137–233CrossRefGoogle Scholar
  59. 59.
    Stepaniuk J (2007)Approximation Spaces in Multi Relational Knowledge Discovery, Transactions on Rough Sets VI:LNCS (Lecture Notes in Artificial Intelligence), vol 4374.Springer, Heidelberg, pp 351–365Google Scholar
  60. 60.
    Ślȩzak D (1996) Approximate reducts in decision tables. Sixth InternationalConference on Information Processing and Management of Uncertainty in Knowledge-Based Systems,IPMU'1996, vol III,Granada, Spain, pp 1159–1164Google Scholar
  61. 61.
    Ślȩzak D (2002)Approximate entropy reducts.Fundam Inform 53:365–387Google Scholar
  62. 62.
    Transactions on Rough Sets website:http://www.springer.com/east/home/computer/lncs?SGWID=5-164-6-99627-0, special issues ofother journals, proceedings of international conferences, tutorials or surveys (see, references inthis paper and, e. g., Pawlak Z, Skowron A (2007) Rudiments of rough sets. Information Sciences.Int J 177(1):3–27; Rough sets: Some extensions. Information Sciences. Int J 177(1):28–40; Roughsets and Boolean reasoning. Information Sciences. Int J 177(1):41–73, and numerous web pages(www.roughsets.org, and logic.mimuw.edu.pl))Google Scholar
  63. 63.
    University of Regina Electronic Bulletin of the Rough Set Community:http://www.cs.uregina.ca/~roughset
  64. 64.
    Vinogradov IM (ed) (1995)Encyclopedia of Mathematics.Kluwer, DordrechtGoogle Scholar
  65. 65.
    Warsaw University Logic Group website:logic.mimuw.edu.pl
  66. 66.
    Wojna A (2007)Analogy-based reasoning in classifier construction.Transactions on Rough Sets IV.LNCS (Lecture Notes in Artificial Intelligence), vol 3700.Springer, Heidelberg, pp 277–374Google Scholar
  67. 67.
    Zadeh LA (2001)A new direction in AI: Toward a computational theory of perceptions.AI Mag 22(1):73–84Google Scholar
  68. 68.
    Zadeh LA (2005)Toward a generalized theory of uncertainty (GTU) – An outline.Inform Sci 171:1–40MathSciNetCrossRefGoogle Scholar
  69. 69.
    Ziarko W (1993)Variable precision rough set model.J Comput Syst Sci 46:39–59MathSciNetMATHCrossRefGoogle Scholar

Further Readings – Books

  1. 70.
    Demri S, Orłowska E (2002)Incomplete Information: Structure, Inference, Complexity.Monographs in Theoretical Computer Science.Springer, BerlinGoogle Scholar
  2. 71.
    Dunin-Kȩplicz B, Jankowski A, Skowron A, Szczuka M (eds) (2005)Monitoring, Security, and Rescue Tasks in Multiagent Systems, MSRAS'2004.Advances in Soft Computing.Springer, HeidelbergGoogle Scholar
  3. 72.
    Düntsch I, Gediga G (2000)Rough set data analysis: A road to non-invasive knowledge discovery.Methodos, BangorGoogle Scholar
  4. 73.
    Grzymała-Busse JW (1990)Managing Uncertainty in Expert Systems.Kluwer, NorwellGoogle Scholar
  5. 74.
    Inuiguchi M, Hirano S, Tsumoto S (eds) (2003)Rough Set Theory and Granular Computing, Studies in Fuzziness and Soft Computing, vol 125.Springer, HeidelbergGoogle Scholar
  6. 75.
    Kostek B (2005) Perception-Based Data Processing in Acoustics. Applications to MusicInformation Retrieval and Psychophysiology of Hearing, Studies in Computational Intelligence, vol 3.Springer, HeidelbergGoogle Scholar
  7. 76.
    Lin TY, Cercone N (eds) (1997)Rough Sets and Data Mining – Analysis of Imperfect Data.Kluwer, BostonGoogle Scholar
  8. 77.
    Lin TY, Yao YY, Zadeh LA (eds) (2001)Rough Sets, Granular Computing and Data Mining.Studies in Fuzziness and Soft Computing.Physica, HeidelbergGoogle Scholar
  9. 78.
    Mitra S, Acharya T (2003)Data mining.Multimedia, Soft Computing, and Bioinformatics.Wiley, New York Google Scholar
  10. 79.
    Munakata T (ed) (1998) Fundamentals of the New Artificial Intelligence: BeyondTraditional Paradigms. Graduate Texts in Computer Science, vol 10.Springer, New YorkGoogle Scholar
  11. 80.
    Orłowska E (ed) (1997)Incomplete Information: Rough Set Analysis. Studies in Fuzziness and Soft Computing, vol 13.Physica, HeidelbergGoogle Scholar
  12. 81.
    Pal SK, Skowron A (eds) (1999)Rough Fuzzy Hybridization: A New Trend in Decision-Making.Springer, SingaporeMATHGoogle Scholar
  13. 82.
    Polkowski L, Lin TY, Tsumoto S (eds) (2000)Rough Set Methods and Applications: New Developments in KnowledgeDiscovery in Information Systems, Studies in Fuzziness and Soft Computing, vol 56.Physica, HeidelbergGoogle Scholar
  14. 83.
    Słowiński R (ed) (1992) Intelligent Decision Support – Handbook of Applications andAdvances of the Rough Sets Theory, System Theory, Knowledge Engineering and Problem Solving, vol 11.Kluwer, DordrechtGoogle Scholar
  15. 84.
    Zhong N, Liu J (eds) (2004)Intelligent Technologies for Information Analysis.Springer, HeidelbergMATHGoogle Scholar

Further Readings – Transactions on Rough Sets

  1. 85.
    Peters JF, Skowron A et al (eds) (2004–2008)Transactions on Rough Sets I-VIII.(Lecture Notes in Computer Science), vols 3100, 3135, 3400, 3700, 4100, 4374, 4400, 5084.Springer, HeidelbergGoogle Scholar

Further Readings – Special Issues of Journals

  1. 86.
    Cercone N, Skowron A, Zhong N (eds) (2001)Comput Intell Int J 17(3) Google Scholar
  2. 87.
    Lin TY (ed) (1996)J Intell Autom Soft Comput 2(2)Google Scholar
  3. 88.
    Pal SK, Pedrycz W, Skowron A, Swiniarski R (eds) (2001)Special volume: Rough-neuro computing.Neurocomputing 36 Google Scholar
  4. 89.
    Peters J, Skowron A (eds) (2001)Special issue: on a rough set approach to reasoning about data.Int J Intell Syst 16(1) Google Scholar
  5. 90.
    Skowron A, Pal SK (eds) (2003)Special volume: Rough sets, pattern recognition and data mining.Pattern Recognit Lett 24(6) Google Scholar
  6. 91.
    Słowiński R, Stefanowski J (eds) (1993) Special issue: Proceedings of the FirstInternational Workshop on Rough Sets: State of the Art and Perspectives, Kiekrz, Poznań, Poland,2–4 September 1992.Found Comput Decis Sci 18(3–4)Google Scholar
  7. 92.
    Ziarko W (ed) (1995)Comput Intell Int J 11(2) Google Scholar
  8. 93.
    Ziarko W (ed) (1996)Fundam Inform 27(2–3) Google Scholar

Further Readings – Proceedings of International Conferences

  1. 94.
    Alpigini JJ, Peters JF, Skowron A, Zhong N (eds) (2002)Third International Conference on Rough Sets and Current Trends in Computing, RSCTC'2002,Malvern, PA, 14–16 October.Lecture Notes in Artificial Intelligence, vol 2475.Springer, HeidelbergGoogle Scholar
  2. 95.
    An A, Stefanowski J, Ramanna S, Butz CJ, Pedrycz W, Wang G (eds) (2007) Proceedings ofthe Eleventh International Conference on Rough Sets, Fuzzy Sets, Data Mining, and GranularComputing, RSFDGrC 2007, Toronto, Canada, 14–16 May.Lecture Notes in Artificial Intelligence,vol 4482.Springer, HeidelbergGoogle Scholar
  3. 96.
    Greco S, Hata Y, Hirano S, Inuiguchi M, Miyamoto S, Nguyen HS, Słowiński R (eds)(2006) Proceedings of the Fifth International Conference on Rough Sets and Current Trends inComputing, RSCTC 2006, Kobe, Japan, 6–8 November.Lecture Notes in Artificial Intelligence, vol 4259.Springer, HeidelbergGoogle Scholar
  4. 97.
    Hirano S, Inuiguchi M, Tsumoto S (eds) (2001) Proceedings of International Workshop onRough Set Theory and Granular Computing, RSTGC'2001, Matsue, Japan, 20–22 May.Bull Int RoughSet Soc 5(1–2)Google Scholar
  5. 98.
    Kryszkiewicz M, Peters JF, Rybiński H, Skowron A (eds) (2007) Proceedings of theInternational Conference on Rough Sets and Intelligent Systems Paradigms, RSEISP 2007, Warsaw,Poland, 28–30 June.Lecture Notes in Artificial Intelligence, vol 4585.Springer, HeidelbergGoogle Scholar
  6. 99.
    Lin TY, Wildberger AM (eds) (1995)Soft Computing: Rough Sets, Fuzzy Logic, Neural Networks, Uncertainty Management, Knowledge Discovery.Simulation Councils, USAGoogle Scholar
  7. 100.
    Polkowski L, Skowron A (eds) (1998)First International Conference on Rough Sets and Soft Computing, RSCTC'1998.Lecture Notes in Artificial Intelligence, vol 1424.Springer, Poland Google Scholar
  8. 101.
    Skowron A (ed) (1985)Proceedings of the 5th Symposium on Computation Theory.Zaborów, Poland, 1984.Lecture Notes in Computer Science, vol 208.Springer, BerlinGoogle Scholar
  9. 102.
    Skowron A, Szczuka M (eds) (2003)Proceedings of the Workshop on Rough Sets in Knowledge Discovery and Soft Computing at ETAPS, 12–13 April.Electronic Notes in Computer Science, vol 82(4).Elsevier, Netherlands, http://www.elsevier.nl/locate/entcs/volume82.html
  10. 103.
    Ślȩzak D, Wang G, Szczuka M, Düntsch I, Yao Y (eds) (2005) Proceedings of the 10thInternational Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing,RSFDGrC'2005, Regina, Canada, 31 August–3 September, Part I. Lecture Notes in ArtificialIntelligence, vol 3641.Springer, HeidelbergGoogle Scholar
  11. 104.
    Ślȩzak D, Yao JT, Peters JF, Ziarko W, Hu X (eds) (2005)Proceedings of the 10th International Conference on Rough Sets, FuzzySets, Data Mining, and Granular Computing, RSFDGrC'2005,Regina, Canada, 31 August–3 September,Part II. Lecture Notes in Artificial Intelligence, vol 3642.Springer, HeidelbergGoogle Scholar
  12. 105.
    Terano T, Nishida T, Namatame A, Tsumoto S, Ohsawa Y, Washio T (eds) (2001)New Frontiers in Artificial Intelligence, Joint JSAI'2001.Workshop Post-Proceedings. Lecture Notes in Artificial Intelligence, vol 2253.Springer, HeidelbergGoogle Scholar
  13. 106.
    Tsumoto S, Kobayashi S, Yokomori T, Tanaka H, Nakamura A (eds) (1996)Proceedings of the The Fourth Internal Workshop on Rough Sets, Fuzzy Sets and Machine Discovery,University of Tokyo, Japan, 6–8 November.The University of Tokyo, TokyoGoogle Scholar
  14. 107.
    Tsumoto S, Słowiński R, Komorowski J, Grzymała-Busse J (eds) (2004) Proceedingsof the 4th International Conference on Rough Sets and Current Trends in Computing, RSCTC'2004,Uppsala, Sweden, 1–5 June.Lecture Notes in Artificial Intelligence, vol 3066.Springer,HeidelbergGoogle Scholar
  15. 108.
    Yao JT, Lingras P, Wu WZ, Szczuka M, Cercone NJ, Ślȩzak D (eds) (2007)Proceedings of the Second International Conference on Rough Sets and Knowledge Technology,RSKT 2007, Toronto, Canada, 14–16 May.Lecture Notes in Artificial Intelligence, vol 4481.Springer, HeidelbergGoogle Scholar
  16. 109.
    Wang G, Liu Q, Yao Y, Skowron A (eds) (2003) Proceedings of the 9th InternationalConference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, RSFDGrC'2003,Chongqing, China, 26–29 May.Lecture Notes in Artificial Intelligence, vol 2639.Springer,HeidelbergGoogle Scholar
  17. 110.
    Zhong N, Skowron A, Ohsuga S (eds) (1999) Proceedings of the 7th InternationalWorkshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing, RSFDGrC'99,Yamaguchi, 9–11 November.Lecture Notes in Artificial Intelligence, vol 1711.Springer,HeidelbergGoogle Scholar
  18. 111.
    Ziarko W (ed) (1994) Rough Sets, Fuzzy Sets and Knowledge Discovery: Proceedings ofthe Second International Workshop on Rough Sets and Knowledge Discovery, RSKD'93, Banff, Canada,12–15 October 1993.Workshops in Computing. Springer & British Computer Society, London,BerlinGoogle Scholar
  19. 112.
    Ziarko W, Yao Y (2001)Proceedings of the 2nd International Conference on Rough Sets and Current Trends in Computing, RSCTC'2000,Banff, Canada, 16–19 October 2000.Lecture Notes in Artificial Intelligence, vol 2005.Springer, HeidelbergGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • James F. Peters
    • 1
  • Andrzej Skowron
    • 2
  • Jarosław Stepaniuk
    • 3
  1. 1.Computational Intelligence LaboratoryUniversity of ManitobaWinnipegCanada
  2. 2.Institute of MathematicsWarsaw UniversityWarsawPoland
  3. 3.Computer ScienceBiałystok University of TechnologyBiałystokPoland