Skip to main content

Quantum Information Processing

  • Reference work entry
Computational Complexity
  • 531 Accesses

Article Outline

Glossary

Definition of the Subject

Introduction

Quantum Mechanics

Quantum Computation

Noise and Errors

Quantum Communication

Implications and Conclusions

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,500.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Algorithm:

A systematic procedure for solving a problem, frequently implemented as a computer program.

Bit:

The fundamental unit of information, representing the distinction between two possible states, conventionally called 0 and 1. The word ‘bit’ is also used to refer to a physical system that registers a bit of information.

Boolean algebra:

The mathematics of manipulating bits using simple operations such as AND, OR, NOT, and COPY.

Communication channel:

A physical system that allows information to be transmitted from one place to another.

Computer:

A device for processing information. A digital computer uses Boolean algebra (q. v.) to processes information in the form of bits.

Cryptography:

The science and technique of encoding information in a secret form. The process of encoding is called encryption, and a system for encoding and decoding is called a cipher. A key is a piece of information used for encoding or decoding. Public‑key cryptography operates using a public key by which information is encrypted, and a separate private key by which the encrypted message is decoded.

Decoherence:

A peculiarly quantum form of noise that has no classical analog. Decoherence destroys quantum superpositions and is the most important and ubiquitous form of noise in quantum computers and quantum communication channels.

Error‐correcting code:

A technique for encoding information in a form that is resistant to errors. The syndrome is the part of the code that allows the error to be detected and that specifies how it should be corrected.

Entanglement:

A peculiarly quantum form of correlation that is responsible for many types of quantum weirdness. Entanglement arises when two or more quantum systems exist in a superposition of correlated states.

Entropy:

Information registered by the microscopic motion of atoms and molecules. The second law of thermodynamics (q. v.)states that entropy does not decrease over time.

Fault‐tolerant computation:

Computation that uses error‐correcting codes to perform algorithms faithfully in the presence of noise and errors. If the rate of errors falls below a certain threshold, then computations of any desired length can be performed in a fault‐tolerant fashion. Also known as robust computation.

Information:

When used in a broad sense, information is data, messages, meaning, knowledge, etc. Used in the more specific sense of information theory, information is a quantity that can be measured in bits.

Logic gate:

A physical system that performs the operations of Boolean algebra (q. v.) such as AND, OR, NOT, and COPY, on bits.

Moore's law:

The observation, first made by Gordon Moore, that the power of computers increases by a factor of two every year and a half or so.

Quantum algorithm:

An algorithm designed specifically to be performed by a quantum computer using quantum logic. Quantum algorithms exploit the phenomena of superposition and entanglement to solve problems more rapidly than classical computer algorithms can. Examples of quantum algorithms include Shor's algorithm for factoring large numbers and breaking public‑key cryptosystems, Grover's algorithm for searching databases, quantum simulation, the adiabatic algorithm, etc.

Quantum bit:

A bit registered by a quantum‐mechanical system such as an atom, photon, or nuclear spin. A quantum bit, or ‘qubit’, has the property that it can exist in a quantum superposition of the states 0 and 1.

Qubit:

A quantum bit.

Quantum communication channel:

A communication channel that transmits quantum bits. The most common communication channel is the bosonic channel, which transmits information using light, sound, or other substances whose elementary excitations consist of bosons (photons for light, phonons for sound).

Quantum computer:

A computer that operates on quantum bits to perform quantum algorithms. Quantum computers have the feature that they can preserve quantum superpositions and entanglement.

Quantum cryptography:

A cryptographic technique that encodes information on quantum bits. Quantum cryptography uses the fact that measuring quantum systems typically disturbs them to implement cryptosystems whose security is guaranteed by the laws of physics. Quantum key distribution (QKD) is a quantum cryptographic technique for distributing secret keys.

Quantum error‐correcting code:

An error‐correcting code that corrects for the effects of noise on quantum bits. Quantum error‐correcting codes can correct for the effect of decoherence (q. v.) as well as for conventional bit‑flip errors.

Quantum information:

Information that is stored on qubits rather than on classical bits.

Quantum mechanics:

The branch of physics that describes how matter and energy behave at their most fundamental scales. Quantum mechanics is famously weird and counterintuitive.

Quantum weirdness:

A catch‑all term for the strange and counterintuitive aspects of quantum mechanics. Well‑known instances of quantum weirdness include Schrödinger's cat (q. v.), the Einstein–Podolsky–Rosen thought experiment, violations of Bell's inequalities, and the Greenberger–Horne–Zeilinger experiment.

Reversible logic:

Logical operations that do not discard information. Quantum computers operate using reversible logic.

Schrödinger's cat:

A famous example of quantum weirdness. A thought experiment proposed by Erwin Schrödinger, in which a cat is put in a quantum superposition of being alive and being dead. Not sanctioned by the Society for Prevention of Cruelty to Animals.

Second law of thermodynamics:

The second law of thermodynamics states that entropy does not increase. An alternative formulation of the second law states that it is not possible to build an eternal motion machine.

Superposition:

The defining feature of quantum mechanics which allows particles such as electrons to exist in two or more places at once. Quantum bits can exist in superpositions of 0 and 1 simultaneously.

Teleportation:

A form of quantum communication that uses pre‑existing entanglement and classical communication to send quantum bits from one place to another.

Bibliography

  1. Nielsen MA, Chuang IL (2000) Quantum Computation and QuantumInformation. Cambridge University Press, Cambridge

    Google Scholar 

  2. Ehrenfest P, Ehrenfest T (1912) The Conceptual Foundations of the StatisticalApproach in Mechanics. Cornell University Press, Ithaca, NY

    Google Scholar 

  3. Planck M (1901) Ann Phys 4:553

    Article  MATH  Google Scholar 

  4. Maxwell JC (1871) Theory of Heat. Appleton, London

    Google Scholar 

  5. Einstein A (1905) Ann Phys 17:132

    Article  MATH  Google Scholar 

  6. Bohr N (1913) Phil Mag 26:1–25, 476–502,857–875

    Google Scholar 

  7. Schrödinger E (1926) Ann Phys 79:361–376, 489–527; (1926) AnnPhys 80:437–490; (1926) Ann Phys 81:109–139

    Google Scholar 

  8. Heisenberg W (1925) Z Phys 33:879–893; (1925) Z Phys 34:858–888;(1925) Z Phys 35:557–615

    Article  MATH  Google Scholar 

  9. Einstein A, Podolsky B, Rosen N (1935) Phys Rev47:777

    Article  MATH  Google Scholar 

  10. Bohm D (1952) Phys Rev 85:166–179,180–193

    Google Scholar 

  11. Bell JS (1964) Physics 1:195

    Google Scholar 

  12. Aharonov Y, Bohm D (1959) Phys Rev 115:485–491; (1961) Phys Rev123:1511–1524

    Article  MathSciNet  Google Scholar 

  13. Aspect A, Grangier P, Roger G (1982) Phys Rev Lett 49:91–94; Aspect A,Dalibard J, Roger G (1982) Phys Rev Lett 49:1804–1807 ; Aspect A (1999) Nature 398:189

    Article  Google Scholar 

  14. Hartley RVL (1928) Bell Syst Tech J 535–563

    Google Scholar 

  15. Turing AM (1936) Proc Lond Math Soc42:230–265

    Article  MathSciNet  Google Scholar 

  16. Shannon CE (1937) Symbolic Analysis of Relay and Switching Circuits. Master'sThesis, MIT

    Google Scholar 

  17. Shannon CE (1948) A Math theory of commun.Bell Syst Tech J27:379–423, 623–656

    MathSciNet  Google Scholar 

  18. von Neumann J (1966) In: Burks AW (ed) Theory of Self‑ReproducingAutomata.University of Illinois Press, Urbana

    Google Scholar 

  19. Landauer R (1961) IBM J Res Develop 5:183–191

    Article  MathSciNet  MATH  Google Scholar 

  20. Lecerf Y (1963) Compte Rendus 257:2597–2600

    MathSciNet  Google Scholar 

  21. Bennett CH (1973) IBM J Res Develop 17:525–532; (1982) Int J Theor Phys21:905–940

    Article  Google Scholar 

  22. Fredkin E, Toffoli T (1982) Int J Theor Phys21:219–253

    Article  MathSciNet  MATH  Google Scholar 

  23. Benioff P (1980) J Stat Phys 22:563–591; (1982) Phys Rev Lett48:1581–1585; (1982) J Stat Phys 29:515–546; Ann NY (1986) Acad Sci 480:475–486

    Article  MathSciNet  Google Scholar 

  24. Feynman RP (1982) Int J Th Ph 21:467

    Article  MathSciNet  Google Scholar 

  25. Deutsch D (1985) Proc Roy Soc Lond A 400:97–117; (1989) Proc Roy Soc LondA 425:73–90

    MathSciNet  Google Scholar 

  26. Shor P (1994) In: Goldwasser S (ed) Proceedings of the 35th Annual Symposium onFoundations of Computer Science. IEEE Computer Society, Los Alamitos, pp 124–134

    Chapter  Google Scholar 

  27. Lloyd S (1993) Science 261:1569; (1994) Science263:695

    Google Scholar 

  28. Cirac JI, Zoller P (1995) Phys Rev Lett 74:4091

    Article  Google Scholar 

  29. Monroe C, Meekhof DM, King BE, Itano WM, Wineland DJ (1995) Phys Rev Lett75:4714

    Article  MathSciNet  MATH  Google Scholar 

  30. Turchette QA, Hood CJ, Lange W, Mabuchi H, Kimble HJ (1995) Phys Rev Lett75:4710

    Article  MathSciNet  Google Scholar 

  31. Grover LK (1996) In: Proceedings, 28th Annual ACM Symposium on the Theory ofComputing, p 212

    Google Scholar 

  32. Cory D, Fahmy AF, Havel TF (1997) Proc Nat Acad Sci USA94:1634–1639

    Article  Google Scholar 

  33. Chuang IL, Vandersypen LMK, Zhou X, Leung DW, Lloyd S (1998) Nature393:143–146

    Article  Google Scholar 

  34. Chuang IL, Gershenfeld N, Kubinec M (1998) Phys Rev Lett80:3408–3411

    Article  Google Scholar 

  35. Gordon JP (1962) Proc IRE 50:1898–1908

    Article  Google Scholar 

  36. Lebedev DS, Levitin LB (1963) Sov Phys Dok 8:377

    MathSciNet  MATH  Google Scholar 

  37. Holevo AS (1973) Prob Per Inf 9:3; Prob Inf Trans (USSR)9:110

    Google Scholar 

  38. Schumacher B, Westmoreland M (1997) Phys Rev A55:2738

    Google Scholar 

  39. Holevo AS (1998) IEEE Trans Inf Th 44:69

    Article  MathSciNet  Google Scholar 

  40. Caves CM, Drummond PD (1994) Rev Mod Phys66:481–537

    Article  Google Scholar 

  41. Yuen HP, Ozawa M (1993) Phys Rev Lett70:363–366

    Article  MathSciNet  MATH  Google Scholar 

  42. Giovannetti V, Guha S, Lloyd S, Maccone L, Shapiro JH, Yuen HP (2004) Phys RevLett 92:027902

    Article  Google Scholar 

  43. Giovannetti V, Guha S, Lloyd S, Maccone L, Shapiro JH (2004) Phys Rev A70:032315

    Article  Google Scholar 

  44. Nielsen M, Schumacher B (1996) Phys Rev A54:2629–2635

    Article  MathSciNet  Google Scholar 

  45. Lloyd S (1997) Phys Rev A 55:1613–1622

    Article  MathSciNet  Google Scholar 

  46. Bennett CH, Brassard G, Cripeau C, Jozsa R, Peres A, Wootters WK (1993) Phys RevLett 70:1895–1899

    Article  MathSciNet  MATH  Google Scholar 

  47. Pan JW, Daniell M, Gasparoni S, Weihs G, Zeilinger A (2001) Phys Rev Lett86:4435–4438

    Article  Google Scholar 

  48. Zhang TC, Goh KW, Chou CW, Lodahl P, Kimble HJ (2003) Phys Rev A67:033802

    Article  Google Scholar 

  49. Wiesner S (1983) SIGACT News 15:78–88

    Article  Google Scholar 

  50. Bennett CH, Brassard G (1984) Proc IEEE Int Conf Comput10–12:175–179

    Google Scholar 

  51. Ekert A (1991) Phys Rev Lett 67:661–663

    Article  MathSciNet  MATH  Google Scholar 

  52. Feynman RP (1965) The Character of Physical Law. MIT Press,Cambridge

    Google Scholar 

  53. Bohr A, Ulfbeck O (1995) Rev Mod Phys 67:1–35

    Article  MathSciNet  Google Scholar 

  54. Wootters WK, Zurek WH (1982) Nature299:802–803

    Article  Google Scholar 

  55. Werner RF (1998) Phys Rev A 58:1827–1832

    Article  Google Scholar 

  56. Bennett CH, Bernstein HJ, Popescu S, Schumacher B (1996) Phys Rev A53:2046–2052

    Article  Google Scholar 

  57. Horodecki M, Horodecki P, Horodecki R (1998) Phys Rev Lett80:5239–5242

    Article  MathSciNet  MATH  Google Scholar 

  58. Horodecki M, Horodecki P, Horodecki R (2000) Phys Rev Lett84:2014–2017

    Article  MathSciNet  Google Scholar 

  59. Wootters WK (1998) Phys Rev Lett 80:2245–2248

    Article  Google Scholar 

  60. Christandl M, Winter A (2004) J Math Phys45:829–840

    Article  MathSciNet  MATH  Google Scholar 

  61. Bohm D (1952) Am J Phys 20:522–523

    Article  Google Scholar 

  62. Bell JS (2004) Aspect A (ed) Speakable and Unspeakable in QuantumMechanics. Cambridge University Press, Cambridge

    Google Scholar 

  63. Clauser JF, Horne MA, Shimony A, Holt RA (1969) Phys Rev Lett23:880–884

    Article  Google Scholar 

  64. Greenberger DM, Horne MA, Zeilinger A (1989) In: Kafatos M (ed) Bell's Theorem,Quantum Theory, and Conceptions of the Universe. Kluwer, Dordrecht

    Google Scholar 

  65. Pan JW, Daniell M, Weinfurter H, Zeilinger A (1999) Phys Rev Lett82:1345–1349

    Article  MathSciNet  MATH  Google Scholar 

  66. Nelson RJ, Cory DG, Lloyd S (2000) Phys Rev A61:022106

    Article  Google Scholar 

  67. Frank MP, Knight TF (1998) Nanotechnology9:162–176

    Article  Google Scholar 

  68. Feynman RP (1985) Opt News 11:11; (1986) Found Phys16:507

    Google Scholar 

  69. Deutsch D, Jozsa R (1992) Proc R Soc London A439:553

    Article  MathSciNet  MATH  Google Scholar 

  70. Simon DR (1994) In: Goldwasser S (ed) Proceedings of the 35th Annual Symposiumon Foundations of Computer Science. IEEE Computer Society, Los Alamitos, pp 116–123

    Chapter  Google Scholar 

  71. Coppersmith D (1994) IBM Research Report RC19642

    Google Scholar 

  72. Hallgren S (2007) J ACM 54:1

    Article  MathSciNet  Google Scholar 

  73. Kuperberg G (2003)arXiv:quant-ph/0302112

  74. Hallgren S, Moore C, Rötteler M, Russell A, Sen P (2006) In: Proc 38th annACM symposium theory comput, pp 604–617

    Google Scholar 

  75. Kitaev AY, Shen A, Vyalyi MN (2002) Classical and Quantum Computation. AmericanMathematical Society, Providence

    MATH  Google Scholar 

  76. Abrams DS, Lloyd S (1997) Phys Rev Lett79:2586–2589

    Article  Google Scholar 

  77. Aspuru-Guzik A, Dutoi AD, Love PJ, Head-Gordon M (2005) Science309:1704–1707

    Article  Google Scholar 

  78. Lloyd S (1996) Science 273:1073–8

    Article  MathSciNet  MATH  Google Scholar 

  79. Wiesner S (1996)arXiv:quant-ph/9603028

  80. Zalka C (1998) Proc Roy Soc Lond A454:313–322

    Article  MATH  Google Scholar 

  81. Ramanathan C, Sinha S, Baugh J, Havel TF, Cory DG (2005) Phys Rev A71:020303(R)

    Article  Google Scholar 

  82. Boyer M, Brassard G, Hoyer P, Tapp A (1998) Fortsch Phys46:493–506

    Article  Google Scholar 

  83. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Science 220:671–680

    Google Scholar 

  84. Farhi E, Goldstone J, Gutmann S (2001) Science292:472–476

    Article  MathSciNet  MATH  Google Scholar 

  85. Sachdev S (1999) Quantum Phase Transitions. Cambridge University Press,Cambridge

    Google Scholar 

  86. Aharonov D, van Dam W, Kempe J, Landau Z, Lloyd S, Regev O (2004) In:Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2004),pp 42–51. quant-ph/0405098

    Google Scholar 

  87. Farhi E, Gutmann S (1998) Phys Rev A58:915–928

    Article  MathSciNet  Google Scholar 

  88. Aharonov D, Ambainis A, Kempe J, Vazirani U (2001) In: Proc 33th ACM Symposiumon Theory of Computing (STOC 2001), pp 50–59

    Google Scholar 

  89. Childs AM, Cleve R, Deotto E, Farhi E, Gutmann S, Spielman DA (2003) Proc 35thACM Symposium on Theory of Computing (STOC 2003), pp 59–68

    Google Scholar 

  90. Farhi E, Goldstone J, Gutmann S (2007) A quantum algorithm for theHamiltonian NAND tree. arXiv:quant-ph/0702144

  91. Hamming R (1980) Coding and Information Theory. Prentice Hall, Upper SaddleRiver

    MATH  Google Scholar 

  92. Shor PW (1995) Physical Review A,52:R2493–R2496

    Google Scholar 

  93. Steane AM (1996) Phys Rev Lett 77:793–797

    Article  MathSciNet  MATH  Google Scholar 

  94. Calderbank AR, Shor PW (1996) Phys Rev A54:1098–1106

    Article  Google Scholar 

  95. Gottesman D (1996) Phys Rev A 54:1862

    Article  MathSciNet  Google Scholar 

  96. Aharonov D, Ben-Or M (1997) In: Proc 29th ann ACM symposium theory comput,pp 176–188

    Google Scholar 

  97. Knill E, Laflamme R, Zurek W (1996)arXiv:quant-ph/9610011

  98. Gottesman D (1998) Phys Rev A 57:127–137

    Article  Google Scholar 

  99. Knill E (2005) Nature 434:39–44

    Article  Google Scholar 

  100. Zanardi P, Rasetti M (1997) Phys Rev Lett79:3306–3309

    Article  Google Scholar 

  101. Lidar DA, Chuang IL, Whaley KB (1998) Phys Rev Lett 81:2594–2597

    Google Scholar 

  102. Knill E, Laflamme R, Viola L (2000) Phys Rev Lett84:2525–2528

    Article  MathSciNet  MATH  Google Scholar 

  103. Zanardi P, Lloyd S (2003) Phys Rev Lett 90:067902

    Article  Google Scholar 

  104. Kitaev AY (2003) Ann Phys 30:2–30

    MathSciNet  Google Scholar 

  105. Lloyd S (2004) Quant Inf Proc 1:15–18

    Google Scholar 

  106. Devetak I (2005) IEEE Trans Inf Th 51:44–55

    Article  MathSciNet  Google Scholar 

  107. Shor PW (2002) Lecture Notes, MSRI Workshop on QuantumComputation. Mathematical Sciences Research Institute, Berkley

    Google Scholar 

  108. DiVincenzo DP, Shor PW, Smolin JA (1998) Phys Rev A 57:830–839

    Google Scholar 

  109. Shor PW (2004) Comm Math Phys 246:453–472

    Article  MathSciNet  MATH  Google Scholar 

  110. Hastings MB (2008) A counterexample to additivity of minimum outputentropy. arXiv:0809.3972

  111. Bennett CH, Wiesner SJ (1992) Phys Rev Lett69:2881

    Article  MathSciNet  MATH  Google Scholar 

  112. Bennett CH, Shor PW, Smolin JA, Thapliyal AV (1999) Phys Rev Lett83:3081–3084

    Article  Google Scholar 

  113. Bennett CH, Brassard G, Robert JM (1988) SIAM Journal on Computing17:210–229

    Article  MathSciNet  Google Scholar 

  114. Ralph TC (1999) Phys Rev A 61:010303

    Article  MathSciNet  Google Scholar 

  115. Braunstein S, Pati AK (2003) Quantum Information With Continuous Variables.Springer, New York

    Book  MATH  Google Scholar 

  116. Harrow AW, Hassidim A, Lloyd S (2008) Quantum algorithm for solving linearsets of equations. arXiv:0811.3171

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Lloyd, S. (2012). Quantum Information Processing . In: Meyers, R. (eds) Computational Complexity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1800-9_153

Download citation

Publish with us

Policies and ethics