Skip to main content

Quantum Computing Using Optics

  • Reference work entry
Computational Complexity

Article Outline

Glossary

Definition of the Subject

Introduction

Quantum Computation with Single Photons

Conditional Optical Two-Qubit Gates

Cluster State Methods

Experimental Implementations

Reprise: Single Photon States

Future Directions

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,500.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Avalanche photodiode (APD):

A device for counting photons that absorbs a single photon and, with some probability, produces a single electrical signal.

Beam splitter:

A linear optical device that partially transmits, and partially reflects, an incoming beam of light.

Bell inequality:

The results of local measurements of dichotomic observables on each component of two correlated classical systems satisfy a correlation function that is less than or equal to a universal bound. This bound can be exceeded by correlated quantum systems.

Bell states:

Four orthogonal, maximally entangled states of two qubits that violate a Bell inequality.

Cluster State:

A highly entangled state of many qubits that enables quantum computation by sequences of conditional single qubit measurements, each conditioned on the results of previous measurements.

c-sign :

A two-qubit gate that leaves all logical states unchanged unless both qubits take the value one, in which case the state suffers a π phase shift.

Entangled state:

The state of a multi‐component quantum system which cannot be expressed as a convex combination of tensor product states of each subsystem. Entangled states cannot be prepared by local operations on each subsystem, even when supplemented by classical communication.

HOM interference:

Hong, Ou and Mandel discovered that when indistinguishable single photon pulses arrive simultaneously at each of the two input ports of a fifty-fifty beam splitter, the probability for detecting two photons, co‐incidently, at each of the two output ports drops to zero. In other words, the photons are either both reflected or both transmitted.

Mixed state:

A quantum state that is not completely known and thus has non zero‐entropy.

Photon:

A single quantum excitation of an orthonormal optical mode. A field in such a state has definite intensity and completely random phase, so that the average field amplitude is zero.

Pure state:

A quantum state that is completely known and thus has zero entropy.

Quantum computation:

The ability to process information in a physical device using unitary evolution of superpositions of the physical states that encode the logical states.

Qubit:

The fundamental unit of quantum information in which two orthogonal states encode one bit of information. Unlike a classical bit, the physical system that forms the qubit can be in a superposition of the two logical states simultaneously.

Quantum teleportation:

A quantum communication protocol based on measurement, feed‐forward and shared entanglement.

Shor's algorithm:

An algorithm for finding the prime factors of large integers by unitarily processing information in a quantum computer.

Tomography:

A measurement scheme for experimentally determining a quantum state in which a large sequence of physical systems, prepared in the same state, are subjected to measurements of a carefully chosen set of physical observables.

Unitary:

A transformation of a quantum state that is physically, and thus logically, reversible. Unitary transformations take pure states to pure quantum states.

Bibliography

  1. Beckman D, Chari AN, Devabhaktuni S, Preskill J (1996) Phys RevA 54:1034

    Article  MathSciNet  Google Scholar 

  2. Braunstein SL et al (1999) Phys Rev Lett 83:1054

    Article  MathSciNet  Google Scholar 

  3. Cleve R, Ekert A, Henderson L, Macchiavello C, Mosca M (1999) On quantumalgorithms. LANL quant-ph/9903061

    Google Scholar 

  4. Darquie B, Jones MPA, Dingjan J, Beugnon J, Bergamini S, Sortais Y, Messin G,Browaeys A, Grangier P (2005) Science 309:454

    Article  Google Scholar 

  5. Deutsch D (1985) Quantum‐theory, the Church–Turing principle and theuniversal quantum computer. Proc R Soc Lond A 400:97–117

    Article  MathSciNet  MATH  Google Scholar 

  6. Duan L-M, Lukin MD, Cirac JI, Zoller P (2001) Nature414:413

    Article  Google Scholar 

  7. Einstein A (1905) On a Heuristic Point of View about the Creation andConversion of Light? Ann Physik 17:132

    Article  MATH  Google Scholar 

  8. Eisaman MD, Fleischhauer M, Lukin MD, Zibrov AS (2006) Toward quantum control ofsingle photons. Opt Photonics News 17:22–27

    Article  Google Scholar 

  9. Feynman RP (1982) Simulating physics with computers. Int J Theor Phys21:467

    Article  MathSciNet  Google Scholar 

  10. Gasparoni S et al (2004) Phys Rev Lett 93:020504

    Article  Google Scholar 

  11. Gilchrist A, Langford NK, Nielsen MA (2005) Distance measures to compare realand ideal quantum processes. Phys Rev A 71:062310

    Article  Google Scholar 

  12. Gottesman D, Chuang IL (1999) Demonstrating the viability of universal quantumcomputation using teleportation and single‐qubit operations. Nature 402:390–393

    Article  Google Scholar 

  13. Hennrich M, Legero T, Kuhn A, Rempe G (2004) Photon statistics ofa non‐stationary periodically driven single‐photon source. New J Phys 6:86

    Article  Google Scholar 

  14. Hofmann H, Takeuchi S (2002) Phys RevA 66:024308

    Article  Google Scholar 

  15. Hong CK, Ou ZY, Mandel L (1987) Measurement of subpicosecond time intervalsbetween two photons by interference. Phys Rev Lett 59:2044

    Article  Google Scholar 

  16. Hutchinson GD, Milburn GJ (2004) Nonlinear quantum optical computing viameasurement. J Modern Opt 51:1211–1222

    MathSciNet  MATH  Google Scholar 

  17. James DFV, Kwiat PG, Munro WJ, White AG (2001) Measurement of qubits. Phys RevA 64:052312

    Article  Google Scholar 

  18. Jiang L, Taylor JM, Khaneja N, Lukin MD (2007) Optimal approach to quantumcommunication using dynamic programming. arXiv:quant-ph/0710.5808

  19. Keller M, Lange B, Hayasaka K, Lange W, Walther H (2003) Continuous generationof single photons with controlled waveform in an ion-trap cavity system. Nature 431:1075

    Article  Google Scholar 

  20. Kieling K, Rudolph T, Eisert J (2007) Percolation, renormalization, and quantumcomputing with nondeterministic gates. Phys Rev Lett 99:130501

    Article  MathSciNet  Google Scholar 

  21. Kiesel N, Schmid C, Weber U, Ursin R, Weinfurter H (2007) Phys Rev Lett99:250505

    Article  Google Scholar 

  22. Knill E (2002) Phys Rev A 66:052306

    Article  MathSciNet  Google Scholar 

  23. Knill E (2005) Quantum computing with realistically noisy devices. Nature434:39–44

    Article  Google Scholar 

  24. Knill E, Laflamme R, Milburn GJ (2001) Efficient linear optical quantumcomputation. Nature 409:46

    Article  Google Scholar 

  25. Kok P, Lee H, Dowling JP (2002) Phys RevA 66:063814

    Article  Google Scholar 

  26. Kok P, Munro WJ, Nemoto K, Ralph TC, Dowling JP, Milburn GJ (2007) Linearoptical quantum computing. Rev Mod Phys 79:135

    Article  Google Scholar 

  27. Langford NK, Weinhold TJ, Prevedel R, Gilchrist A, O'Brien JL, Pryde GJ, WhiteAG (2005) Phys Rev Lett 95:210504

    Article  Google Scholar 

  28. Lanyon BP, Barbieri M, Almeida MP, Jennewein T, Ralph TC, Resch KJ, Pryde G,O'Brien JL, Gilchrist A, White AG (2007) Quantum computing using shortcuts through higher dimensions. appear in Nat Phys

    Google Scholar 

  29. Lanyon BP, Weinhold TJ, Langford NK, Barbieri M, James DFV, Gilchrist A, WhiteAG (2007) Phys Rev Lett 99:250505

    Article  Google Scholar 

  30. Lu C-Y, Browne DE, Yang T, Pan J-W (2007) Phys Rev Lett99:250504

    Article  Google Scholar 

  31. Lu C-Y, Zhou X-Q, Gühne O, Gao W-B, Zhang J, Yuan Z-S, Goebel A, Yang T, Pan J-W(2007) Experimental entanglement of six photons in graph states. Nature Phys 3:91

    Google Scholar 

  32. Menicucci NC et al (2002) Phys Rev Lett 88:167901

    Article  Google Scholar 

  33. Migdall A et al (2002) Phys RevA 66:053805

    Article  Google Scholar 

  34. Milburn GJ (1989) A quantum optical fredkin gate. Phys Rev Lett62:2124–2127

    Article  Google Scholar 

  35. Mishina OS, Kupriyanov DV, Muller JH, Polzik ES (2007) Spectral theory ofquantum memory and entanglement via Raman scattering of light by an atomic ensemble. Phys Rev A 75:042326

    Article  Google Scholar 

  36. Neergaard‐Nielsen JS, Melholt Nielsen B, Takahashi H, Vistnes AI, PolzikES (2007) High purity bright single photon source. Opt Express 15:7940

    Google Scholar 

  37. Nielsen MA (2004) Optical quantum computation using cluster states. Phys RevLett 93:040503

    Article  Google Scholar 

  38. O'Brien JL et al (2004) Phys Rev Lett 93:080502

    Article  Google Scholar 

  39. O'Brien JL, Pryde GJ, White AG, Ralph TC Branning D(2003) Demonstration of an all‐optical quantum controlled‐NOT gate. Nature 426:264

    Article  Google Scholar 

  40. Okamoto R, Hofmann HF, Takeuchi S, Sasaki K (2007) Phys Rev Lett99:250506

    Article  Google Scholar 

  41. Pittman TB, Jacobs BC, Franson JD (2001) Probabilistic quantum logic operationsusing polarizing beam splitters. Phys Rev A 64:062311

    Article  Google Scholar 

  42. Pittman TB, Jacobs BC, Franson JD (2002) Phys Rev Lett88:257902

    Article  Google Scholar 

  43. Pittman TB, Fitch MJ, Jacobs BC, Franson JD (2003) Experimentalcontrolled‐NOT logic gate for single photons in the coincidence basis. Phys Rev A 68:032316

    Article  Google Scholar 

  44. Popescu S (2006) KLM quantum computation as a measurement basedcomputation. arXiv:quant-ph/0610025

  45. Prevedel R et al (2007) Nature 445:65

    Article  Google Scholar 

  46. Ralph TC, White AG, Munro WJ, Milburn GJ (2001) Simple scheme for efficientlinear optics quantum gates. Phys Rev A 65:012314

    Article  Google Scholar 

  47. Ralph TC, Langford NK, Bell TB, White AG (2002) Linear opticalcontrolled‐NOT gate in the coincidence basis. Phys Rev A 65:062324

    Article  Google Scholar 

  48. Raussendorf R, Briegel HJ (2001) A one-way quantum computer. Phys Rev Lett86:5188

    Article  Google Scholar 

  49. Rhode PP, Ralph TC (2005) Phys Rev A 71:032320

    Article  Google Scholar 

  50. Sangouard N, Simon C, Minar J, Zbinden H, de Riedmatten H, Gisin N (2007)Long‐distance entanglement distribution with single‐photon sources. arXiv:quant-ph/0706.1924v1

  51. Shor P (1994) Algorithms for quantum computation: Discrete logarithms andfactoring. Proc 35th annual symposium on foundations of computer science. See also LANL preprint quant-ph/9508027

    Google Scholar 

  52. Simon C et al (2007) Phys Rev Lett 98:190503

    Article  Google Scholar 

  53. Special Issue on Single photon Sources (2004) Single photon Sources51(9–10)

    Google Scholar 

  54. U'Ren AB, Mukamel E, Banaszek K, Walmsley IA (2003) Phil Trans Roy SocA 361:1471

    Article  Google Scholar 

  55. Van Meter R, Ladd TD, Munro WJ, Nemoto K (2007) System Design fora Long-Line Quantum Repeater. arXiv:quant-ph/0705.4128v1

  56. Vandersypen LMK et al (2001) Nature 414:883

    Article  Google Scholar 

  57. Walls DF, Milburn GJ (2008) Quantum Optics, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  58. Walther P, Resch KJ, Rudolph T, Schenck E, Weinfurter H, Vedral V, Aspelmeyer M,Zeilinger A (2005) Experimental one-way quantum computing. Nature 434:169

    Article  Google Scholar 

  59. Weinhold TJ, Gilchrist A, Resch KJ, Doherty AC, O'Brien JL, Pryde GJ, White AG (2008) Understanding photonic quantum-logic gates: The road to fault tolerance. arxiv 0808.0794

    Google Scholar 

  60. White AG et al (2007) Measuring two-qubit gates. J Opt Soc Am B24:172–183

    Article  Google Scholar 

  61. Yamamoto Y, Kitagawa M, Igeta K (1988) Proc 3rd Asia‐Pacific phys conf779. World Scientific, Singapore

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Milburn, G.J., White, A.G. (2012). Quantum Computing Using Optics. In: Meyers, R. (eds) Computational Complexity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1800-9_150

Download citation

Publish with us

Policies and ethics