Skip to main content

Optical Computing

  • Reference work entry
Book cover Computational Complexity

Article Outline

Glossary

Definition of the Subject

Introduction

History

Selected Elements of Optical Computing Systems

Continuous Space Machine (CSM)

Example CSM Datastructures and Algorithms

C2-CSM

Optical Computing and Computational Complexity

Future Directions

Acknowledgments

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,500.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Coherent light:

Light of a narrow band of wavelengths (temporally coherent), and a light beam whose phase is approximately constant over its cross sectional area (spatial coherence). For example, coherent light can be produced by a laser.

Incoherent light:

Light which is not spatially coherent and not temporally coherent. For example, incoherent light is produced by a conventional light bulb.

Source:

A device for generating light.

Spatial light modulator (SLM):

A device that imposes some form of spatially‐varying modulation on a beam of light. An SLM may modulate the intensity, phase, or both, of the light.

Detector:

A device for sensing light.

Continuous space machine (CSM):

A general optical model of computation that is defined in Sect. “Continuous Space Machine (CSM)”.

Parallel computation thesis:

This thesis states that parallel time corresponds, within a polynomial, to sequential space, for reasonable parallel and sequential machines [29,52,74,98,126].

P, NP, PSPACE, NC:

Complexity classes , these classes are respectively defined as the set of problems solvable on polynomial time deterministic Turing machines ; polynomial time nondeterministic Turing machines; polynomial space Turing machines; and parallel computers that use polylogarithmic time and polynomial hardware [97].

Bibliography

  1. Abushagur MAG, Caulfield HJ (1987) Speed and convergence of bimodal optical computers. Opt Eng 26(1):22–27

    Google Scholar 

  2. Adleman LM (1994) Molecular computation of solutions to combinatorial problems.Science 266:1021–1024

    Google Scholar 

  3. Alhazov A, de Jesús Pérez–Jiménez M (2007) Uniform solution to QSAT using polarizationless active membranes. In: Durand–Lose J, Margenstern M (eds) Machines, Computations and Universality (MCU). LNCS, vol 4664. Springer, Orléans, pp 122–133

    Google Scholar 

  4. Armitage JD, Lohmann AW (1965) Character recognition by incoherent spatial filtering. Appl Opt 4(4):461–467

    Google Scholar 

  5. Arsenault HH, Sheng Y (1992) An Introduction to Optics in Computers. Tutorial Texts in Optical Engineering, vol TT8. SPIE Press, Bellingham, Washington

    Google Scholar 

  6. Arsenault HH, Hsu YN, Chalasinska–Macukow K (1984) Rotation‐invariant pattern recognition. Opt Eng 23(6):705–709

    Google Scholar 

  7. Balcázar JL, Díaz J, Gabarró J (1988) Structural complexity, vols I and II. EATCS Monographs on Theoretical Computer Science. Springer, Berlin

    Google Scholar 

  8. Beyette Jr FR, Mitkas PA, Feld SA, Wilmsen CW (1994) Bitonic sorting using an optoelectronic recirculating architecture.Appl Opt 33(35):8164–8172

    Google Scholar 

  9. Borodin A (1977) On relating time and space to size and depth.SIAM J Comput 6(4):733–744

    MathSciNet  MATH  Google Scholar 

  10. Bracewell RN (1978) The Fourier transform and its applications, 2nd edn. Electrical and electronic engineering series, McGraw–Hill, New York

    Google Scholar 

  11. Brenner KH, Huang A, Streibl N (1986) Digital optical computing with symbolic substitution. Appl Opt 25(18):3054–3060

    Google Scholar 

  12. Brenner KH, Kufner M, Kufner S (1990) Highly parallel arithmetic algorithms for a digital optical processor using symbolic substitution logic.Appl Opt 29(11):1610–1618

    Google Scholar 

  13. Casasent DP (1984) Unified synthetic discriminant function computational formulation.Appl Opt 23:1620–1627

    Google Scholar 

  14. Casasent DP, House GP (1994) Comparison of coherent and noncoherent optical correlators. In: Optical Pattern Recognition V. Proceedings of SPIE, vol 2237. SPIE, Bellingham, pp 170–178

    Google Scholar 

  15. Casasent DP, House GP (1994) Implementation issues for a noncoherent optical correlator. In: Optical Pattern Recognition V.Proceedings of SPIE, vol 2237. SPIE, Bellingham, pp 179–188

    Google Scholar 

  16. Casasent DP, Psaltis D (1976) Position, rotation, and scale invariant optical correlation.Appl Opt 15(7):1795–1799

    Google Scholar 

  17. Casasent DP, Psaltis D (1976) Scale invariant optical transforms.Opt Eng 15(3):258–261

    Google Scholar 

  18. Casasent DP, Jackson J, Neuman CP (1983) Frequency‐multiplexed and pipelined iterative optical systolic array processors.Appl Opt 22:115–124

    Google Scholar 

  19. Caulfield HJ (ed) (1979) Handbook of Optical Holography. Academic Press, New York

    Google Scholar 

  20. Caulfield HJ (1989) Computing with light. Byte 14:231–237

    Google Scholar 

  21. Caulfield HJ (1989) The energetic advantage of analog over digital computing. In: OSA Optical Computing Technical Digest Series, vol 9. Optical Society of America, Washington, pp 180–183

    Google Scholar 

  22. Caulfield HJ (1990) Space-time complexity in optical computing. In: Javidi B (ed) Optical information‐processing systems and architectures II. SPIE, vol 1347. SPIE Press, Bellingham, pp 566–572

    Google Scholar 

  23. Caulfield HJ, Abushagur MAG (1986) Hybrid analog‐digital algebra processors.In: Optical and Hybrid Computing II. Proceedings of SPIE, vol 634. SPIE Press, Bellingham, pp 86–95

    Google Scholar 

  24. Caulfield HJ, Haimes R (1980) Generalized matched filtering.Appl Opt 19(2):181–183

    Google Scholar 

  25. Caulfield HJ, Horvitz S, Winkle WAV (1977) Introduction to the special issue on optical computing. Proceedings of the IEEE 65(1):4–5

    Google Scholar 

  26. Caulfield HJ, Rhodes WT, Foster MJ, Horvitz S (1981) Optical implementation of systolic array processing. Opt Commun 40:86–90

    Google Scholar 

  27. Caulfield HJ, Kinser JM, Rogers SK (1989) Optical neural networks.Proc IEEE 77:1573–1582

    Google Scholar 

  28. Cerf NJ, Adami C, Kwiat PG (1998) Optical simulation of quantum logic.Phys Rev A 57(3):R1477–R1480

    MathSciNet  Google Scholar 

  29. Chandra AK, Stockmeyer LJ (1976) Alternation. In: 17th annual symposium on Foundations of Computer Science, IEEE, Houston, Texas, pp 98–108

    Google Scholar 

  30. Chandra AK, Kozen DC, Stockmeyer LJ (1981) Alternation.J ACM 28(1):114–133

    MathSciNet  MATH  Google Scholar 

  31. Chang S, Arsenault HH, Garcia–Martinez P, Grover CP (2000) Invariant pattern recognition based on centroids.Appl Opt 39(35):6641–6648

    Google Scholar 

  32. Chen FS, LaMacchia JT, Fraser DB (1968) Holographic storage in lithium niobate.Appl Phys Lett 13(7):223–225

    Google Scholar 

  33. Chiou AE (1999) Photorefractive phase‐conjugate optics for image processing, trapping, and manipulation of microscopic objects.Proc IEEE 87(12):2074–2085

    Google Scholar 

  34. Clavero R, Ramos F, Martí J (2005) All‐optical flip-flop based on an active Mach–Zehnder interferometer with a feedback loop.Opt Lett 30(21):2861–2863

    Google Scholar 

  35. Cutrona LJ, Leith EN, Palermo CJ, Porcello LJ (1960) Optical data processing and filtering systems.IRE Trans Inf Theory 6(3):386–400

    MathSciNet  Google Scholar 

  36. Cutrona LJ, Leith EN, Porcello LJ, Vivian WE (1966) On the application of coherent optical processing techniques to synthetic‐aperture radar.Proc IEEE 54(8):1026–1032

    Google Scholar 

  37. Desmulliez MPY, Wherrett BS, Waddie AJ, Snowdon JF, Dines JAB (1996) Performance analysis of self‐electro‐optic‐effect‐device‐based (seed‐based) smart-pixel arrays used in data sorting. Appl Opt 35(32):6397–6416

    Google Scholar 

  38. Dolev S, Fitoussi H (2007) The traveling beam: optical solution for bounded NP‐complete problems. In: Crescenzi P, Prencipe G, Pucci G (eds) The fourth international conference on fun with algorithms (FUN). Springer, Heidelberg, pp 120–134

    Google Scholar 

  39. Dorren HJS, Hill MT, Liu Y, Calabretta N, Srivatsa A, Huijskens FM, de Waardt H, Khoe GD (2003) Optical packet switching and buffering by using all‐optical signal processing methods.J Lightwave Technol 21(1):2–12

    Google Scholar 

  40. Durand–Lose J (2006) Reversible conservative rational abstract geometrical computation is Turing‐universal. In: Logical Approaches to Computational Barriers, Second Conference on Computability in Europe, (CiE). Lecture Notes in Computer Science. Springer, Swansea, vol 3988. pp 163–172

    Google Scholar 

  41. Efron U, Grinberg J, Braatz PO, Little MJ, Reif PG, Schwartz RN (1985) The silicon liquid crystal light valve.J Appl Phys 57(4):1356+

    Google Scholar 

  42. Esteve–Taboada JJ, García J, Ferreira C (2000) Extended scale‐invariant pattern recognition with white-light illumination.Appl Opt 39(8):1268–1271

    Google Scholar 

  43. Farhat NH, Psaltis D (1984) New approach to optical information processing based on the Hopfield model.J Opt Soc Am A 1:1296

    Google Scholar 

  44. Feitelson DG (1988) Optical Computing: A survey for computer scientists. MIT Press, Cambridge, Massachusetts

    Google Scholar 

  45. Feng JH, Chin GF, Wu MX, Yan SH, Yan YB (1995) Multiobject recognition in a multichannel joint‐transform correlator.Opt Lett 20(1):82–84

    Google Scholar 

  46. Fortune S, Wyllie J (1978) Parallelism in random access machines. In: Proc. 10th Annual ACM Symposium on Theory of Computing, ACM, New York, pp 114–118

    Google Scholar 

  47. Gabor D (1948) A new microscopic principle. Nature 161(4098):777–778

    Google Scholar 

  48. Gara AD (1979) Real time tracking of moving objects by optical correlation. Appl Opt 18(2):172–174

    Google Scholar 

  49. Geldenhuys R, Liu Y, Calabretta N, Hill MT, Huijskens FM, Khoe GD, Dorren HJS (2004) All‐optical signal processing for optical packet switching.J Opt Netw 3(12):854–865

    Google Scholar 

  50. Ghosh AK, Casasent DP, Neuman CP (1985) Performance of direct and iterative algorithms on an optical systolic processor.Appl Opt 24(22):3883–3892

    Google Scholar 

  51. Goldberg L, Lee SH (1979) Integrated optical half adder circuit.Appl Opt 18:2045–2051

    Google Scholar 

  52. Goldschlager LM (1977) Synchronous parallel computation. Ph D thesis, University of Toronto, Computer Science Department

    Google Scholar 

  53. Goldschlager LM (1978) A unified approach to models of synchronous parallel machines. In: Proc. 10th Annual ACM Symposium on Theory of Computing. ACM, New York, pp 89–94

    Google Scholar 

  54. Goldschlager LM (1982) A universal interconnection pattern for parallel computers.J ACM 29(4):1073–1086

    MathSciNet  MATH  Google Scholar 

  55. Goodman JW (1977) Operations achievable with coherent optical information processing systems.Proc IEEE 65(1):29–38

    Google Scholar 

  56. Goodman JW (2005) Introduction to Fourier Optics, 3rd edn. Roberts & Company, Englewood

    Google Scholar 

  57. Grinberg J, Jacobson AD, Bleha WP, Miller L, Fraas L, Boswell D, Myer G (1975) A new real-time noncoherent to coherent light image converter: The hybrid field effect liquid crystal light valve.Opt Eng 14(3):217–225

    Google Scholar 

  58. Grover LK (1996) A fast quantum mechanical algorithm for database search. In: Proc. 28th Annual ACM Symposium on Theory of Computing. ACM, New York, pp 212–219

    Google Scholar 

  59. Guilfoyle PS, Hessenbruch JM, Stone RV (1998) Free-space interconnects for high‐performance optoelectronic switching.IEEE Comp 31(2):69–75

    Google Scholar 

  60. Haist T, Osten W (2007) An optical solution for the travelling salesman problem.Opt Expr 15(16):10473–10482

    Google Scholar 

  61. Hartmanis J, Simon J (1974) On the power of multiplication in random access machines. In: Proceedings of the 15th annual symposium on switching and automata theory. IEEE, The University of New Orleans, pp 13–23

    Google Scholar 

  62. Head T (1987) Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors.Bull Math Biol 49(6):737–759

    MathSciNet  MATH  Google Scholar 

  63. Horner JL (ed) (1987) Optical Signal Processing. Academic Press, San Diego

    Google Scholar 

  64. Hough PVC (1962) Methods and measures for recognising complex patterns. U.S. Patent No. 3069654

    Google Scholar 

  65. Hsu KY, Li HY, Psaltis D (1990) Holographic implementation of a fully connected neural network.Proc IEEE 78(10):1637–1645

    Google Scholar 

  66. Hsu YN, Arsenault HH (1982) Optical pattern recognition using circular harmonic expansion.Appl Opt 21(22):4016–4019

    Google Scholar 

  67. Huang A (1984) Architectural considerations involved in the design of an optical digital computer.Proc IEEE 72(7):780–786

    Google Scholar 

  68. Huang A, Tsunoda Y, Goodman JW, Ishihara S (1979) Optical computation using residue arithmetic.Appl Opt 18(2):149–162

    Google Scholar 

  69. Jacobson AD, Beard TD, Bleha WP, Morgerum JD, Wong SY (1972) The liquid crystal light value, an optical-to‐optical interface device. In: Proceedings of the Conference on Parallel Image Processing, document X-711-72-308, Goddard Space Flight Center. NASA, Washington, pp 288–299

    Google Scholar 

  70. Javidi B (1989) Nonlinear joint power spectrum based optical correlation. Appl Opt 28(12):2358–2367

    Google Scholar 

  71. Javidi B (1990) Generalization of the linear matched filter concept to nonlinear matched filters.Appl Opt 29(8):1215–1217

    Google Scholar 

  72. Javidi B, Wang J (1995) Optimum distortion‐invariant filter for detecting a noisy distorted target in nonoverlapping background noise.J Opt Soc Am A 12(12):2604–2614

    Google Scholar 

  73. Karim MA, Awwal AAS (1992) Optical Computing: An Introduction. Wiley, New York

    Google Scholar 

  74. Karp RM, Ramachandran V (1990) Parallel algorithms for shared memory machines.In: van Leeuwen J (ed) Handbook of Theoretical Computer Science, vol A.Elsevier, Amsterdam, pp 869–941

    Google Scholar 

  75. Knill E, LaFlamme R, Milburn GJ (2001) A scheme for efficient quantum computation with linear optics. Nature 409:46–52

    Google Scholar 

  76. Lee JN (ed) (1995) Design Issues in Optical Processing.Cambridge Studies in Modern Optics. Cambridge University Press, Cambridge

    Google Scholar 

  77. Lee JN (ed) (1995) Design issues in optical processing.Cambridge studies in modern optics. Cambridge University Press, Cambridge

    Google Scholar 

  78. Leith EN (1977) Complex spatial filters for image deconvolution.Proc IEEE 65(1):18–28

    Google Scholar 

  79. Lenslet Labs (2001) Optical digital signal processing engine. white paper report, Lenslet Ltd., 12 Hachilazon St., Ramat–Gan, Israel 52522

    Google Scholar 

  80. Lipton RJ (1995) Using DNA to solve NP‐complete problems.Science 268:542–545

    Google Scholar 

  81. Lohmann AW (1993) Image rotation, Wigner rotation, and the fractional Fourier transform.J Opt Soc Am A 10(10):2181–2186

    MathSciNet  Google Scholar 

  82. Louri A, Post A (1992) Complexity analysis of optical‐computing paradigms.Appl Opt 31(26):5568–5583

    Google Scholar 

  83. Louri A, Hatch Jr JA, Na J (1995) Constant‐time parallel sorting algorithm and its optical implementation using smart pixels.Appl Opt 34(17):3087–3097

    Google Scholar 

  84. Lu XJ, Yu FTS, Gregory DA (1990) Comparison of Vander lugt and joint transform correlators. Appl Phys B 51:153–164

    Google Scholar 

  85. McAulay AD (1991) Optical Computer Architectures: The Application of Optical Concepts to Next Generation Computers. Wiley, New York

    Google Scholar 

  86. Mead C (1989) Analog VLSI and Neural Systems. Addison–Wesley, Reading

    MATH  Google Scholar 

  87. Miller DA (2000) Rationale and challenges for optical interconnects to electronic chips.Proc IEEE 88(6):728–749

    Google Scholar 

  88. Moore C (1991) Generalized shifts: undecidability and unpredictability in dynamical systems.Nonlinearity 4:199–230

    MathSciNet  MATH  Google Scholar 

  89. Moore C (1997) Majority‐vote cellular automata, Ising dynamics and P‑completeness.J Stat Phys 88(3/4):795–805

    MATH  Google Scholar 

  90. Naughton T, Javadpour Z, Keating J, Klíma M, Rott J (1999) General‐purpose acousto‐optic connectionist processor.Opt Eng 38(7):1170–1177

    Google Scholar 

  91. Naughton TJ (2000) Continuous‐space model of computation is Turing universal. In: Bains S, Irakliotis LJ (eds) Critical Technologies for the Future of Computing. Proc SPIE, vol 4109. San Diego, pp 121–128

    Google Scholar 

  92. Naughton TJ (2000) A model of computation for Fourier optical processors. In: Lessard RA, Galstian T (eds) Optics in Computing 2000. Proc SPIE, vol 4089.Quebec, pp 24–34

    Google Scholar 

  93. Naughton TJ, Woods D (2001) On the computational power of a continuous‐space optical model of computation. In: Margenstern M, Rogozhin Y (eds) Machines, Computations and Universality: Third International Conference (MCU'01).LNCS, vol 2055. Springer, Heidelberg, pp 288–299

    Google Scholar 

  94. Oltean M (2006) A light-based device for solving the Hamiltonian path problem. In: Fifth International Conference on Unconventional Computation (UC'06). LNCS, vol 4135. Springer, York, pp 217–227

    Google Scholar 

  95. O'Neill EL (1956) Spatial filtering in optics.IRE Trans Inf Theory 2:56–65

    Google Scholar 

  96. Paek EG, Choe JY, Oh TK, Hong JH, Chang TY (1997) Nonmechanical image rotation with an acousto‐optic dove prism.Opt Lett 22(15):1195–1197

    Google Scholar 

  97. Papadimitriou CH (1995) Computational complexity. Addison–Wesley, Reading

    Google Scholar 

  98. Parberry I (1987) Parallel complexity theory. Wiley, New York

    MATH  Google Scholar 

  99. Păun G (2002) Membrane computing: an introduction. Springer, Heidelberg

    Google Scholar 

  100. Pe'er A, Wang D, Lohmann AW, Friesem AA (1999) Optical correlation with totally incoherent light.Opt Lett 24(21):1469–1471

    Google Scholar 

  101. Pittman TB, Fitch MJ, Jacobs BC, Franson JD (2003) Experimental controlled-NOT logic gate for single photons in the coincidence basis.Phys Rev A 68:032316–3

    Google Scholar 

  102. Pratt VR, Stockmeyer LJ (1976) A characterisation of the power of vector machines.J Comput Syst Sci 12:198–221

    MathSciNet  MATH  Google Scholar 

  103. Pratt VR, Rabin MO, Stockmeyer LJ (1974) A characterisation of the power of vector machines. In: Proc 6th annual ACM symposium on theory of computing.ACM, New York, pp 122–134

    Google Scholar 

  104. Psaltis D, Farhat NH (1985) Optical information processing based on an associative‐memory model of neural nets with thresholding and feedback.Opt Lett 10(2):98–100

    Google Scholar 

  105. Pu A, Denkewalter RF, Psaltis D (1997) Real-time vehicle navigation using a holographic memory.Opt Eng 36(10):2737–2746

    Google Scholar 

  106. Reif J, Tygar D, Yoshida A (1990) The computability and complexity of optical beam tracing. In: 31st Annual IEEE Symposium on Foundations of Computer Science (FOCS). IEEE, St. Louis, pp 106–114

    Google Scholar 

  107. Reif JH, Tyagi A (1997) Efficient parallel algorithms for optical computing with the discrete Fourier transform (DFT) primitive.Appl Opt 36(29):7327–7340

    Google Scholar 

  108. Rhodes WT (1981) Acousto‐optic signal processing: convolution and correlation.Proc IEEE 69(1):65–79

    MathSciNet  Google Scholar 

  109. Sawchuk AA, Strand TC (1984) Digital optical computing.Proc IEEE 72(7):758–779

    Google Scholar 

  110. Shaked NT, Simon G, Tabib T, Mesika S, Dolev S, Rosen J (2006) Optical processor for solving the traveling salesman problem (TSP). In: Javidi B, Psaltis D, Caulfield HJ (eds) Proc SPIE, Optical Information Systems IV, vol 63110G. SPIE, Bellingham

    Google Scholar 

  111. Shaked NT, Messika S, Dolev S, Rosen J (2007) Optical solution for bounded NP‐complete problems.Appl Opt 46(5):711–724

    Google Scholar 

  112. Shor P (1994) Algorithms for quantum computation: Discrete logarithms ande factoring. In: Proceedings 35th Annual Symposium on Foundations Computer Science. ACM, New York, pp 124–134

    Google Scholar 

  113. Sosík P (2003) The computational power of cell division in P systems: Beating down parallel computers?Nat Comput 2(3):287–298

    Google Scholar 

  114. Sosík P, Rodríguez–Patón A (2007) Membrane computing and complexity theory: A characterization of PSPACE.J Comput Syst Sci 73(1):137–152

    Google Scholar 

  115. Stirk CW, Athale RA (1988) Sorting with optical compare‐and‐exchange modules.Appl Opt 27(9):1721–1726

    Google Scholar 

  116. Stone RV (1994) Optoelectronic processor is programmable and flexible. Laser Focus World 30(8):77–79

    Google Scholar 

  117. Stone RV, Zeise FF, Guilfoyle PS (1991) DOC II 32-bit digital optical computer: optoelectronic hardware and software. In: Optical Enhancements to Computing Technology, Proc SPIE, vol 1563. SPIE, Bellingham, pp 267–278

    Google Scholar 

  118. Stroke GW, Halioua M, Thon F, Willasch DH (1974) Image improvement in high‐resolution electron microscopy using holographic image deconvolution.Optik 41(3):319–343

    Google Scholar 

  119. Sullivan DL (1972) Alignment of rotational prisms.Appl Opt 11(9):2028–2032

    Google Scholar 

  120. Tromp J, van Emde Boas P (1993) Associative storage modification machines. In: Ambos–Spies K, Homer S, Schöning U (eds) Complexity theory: current research. Cambridge University Press, pp 291–313

    Google Scholar 

  121. Turin GL (1960) An introduction to matched filters.IRE Trans Inf Theory 6(3):311–329

    MathSciNet  Google Scholar 

  122. Upatnieks J (1983) Portable real-time coherent correlator.Appl Opt 22(18):2798–2803

    Google Scholar 

  123. VanderLugt A (1964) Signal detection by complex spatial filtering.IEEE Trans Inf Theory 10(2):139–145

    Google Scholar 

  124. VanderLugt A (1974) Coherent optical processing.Proc IEEE 62(10):1300–1319

    Google Scholar 

  125. VanderLugt A (1992) Optical Signal Processing. Wiley, New York

    Google Scholar 

  126. van Emde Boas P (1990) Machine models and simulations. In: van Leeuwen J (ed) Handbook of Theoretical Computer Science, vol A. Elsevier, Amsterdam, chap 1

    Google Scholar 

  127. van Leeuwen J, Wiedermann J (1987) Array processing machines. BIT 27:25–43

    MathSciNet  MATH  Google Scholar 

  128. Wang CH, Jenkins BK (1990) Subtracting incoherent optical neuron model – Analysis, experiment and applications.Appl Opt 29(14):2171–2186

    Google Scholar 

  129. Wang PY, Saffman M (1999) Selecting optical patterns with spatial phase modulation.Opt Lett 24(16):1118–1120

    Google Scholar 

  130. Weaver CS, Goodman JW (1966) A technique for optically convolving two functions.Appl Opt 5(7):1248–1249

    Google Scholar 

  131. Woods D (2005) Computational complexity of an optical model of computation. Ph D thesis, National University of Ireland, Maynooth

    Google Scholar 

  132. Woods D (2005) Upper bounds on the computational power of an optical model of computation. In: Deng X, Du D (eds) 16th International Symposium on Algorithms and Computation (ISAAC 2005). LNCS, vol 3827. Springer, Heidelberg, pp 777–788

    Google Scholar 

  133. Woods D (2006) Optical computing and computational complexity. In: Fifth International Conference on Unconventional Computation (UC'06). LNCS, vol 4135. Springer, pp 27–40

    Google Scholar 

  134. Woods D, Gibson JP (2005) Complexity of continuous space machine operations. In: Cooper SB, Löewe B, Torenvliet L (eds) New Computational Paradigms, First Conference on Computability in Europe (CiE 2005). LNCS, vol 3526. Springer, Amsterdam, pp 540–551

    Google Scholar 

  135. Woods D, Gibson JP (2005) Lower bounds on the computational power of an optical model of computation. In: Calude CS, Dinneen MJ, Păun G, Pérez–Jiménez MJ, Rozenberg G (eds) Fourth International Conference on Unconventional Computation (UC'05). LNCS, vol 3699. Springer, Heidelberg, pp 237–250

    Google Scholar 

  136. Woods D, Naughton TJ (2005) An optical model of computation.Theor Comput Sci 334(1–3):227–258

    MathSciNet  MATH  Google Scholar 

  137. Woods D, Naughton TJ (2008) Parallel and sequential optical computing. In: International Workshop on Optical SuperComputing. LNCS. Springer, Heidelberg

    Google Scholar 

  138. Yamaguchi I, Zhang T (1997) Phase‐shifting digital holography. Opt Lett 22(16):1268–1270

    Google Scholar 

  139. Yokomori T (2002) Molecular computing paradigm – toward freedom from Turing's charm.Nat Comput 1(4):333–390

    MathSciNet  MATH  Google Scholar 

  140. Yu FTS (1996) Garden of joint transform correlators: an account of recent advances. In: Second International Conference on Optical Information Processing. Proc SPIE, vol 2969. SPIE, Bellingham, pp 396–401

    Google Scholar 

  141. Yu FTS, Lu T, Yang X, Gregory DA (1990) Optical neural network with pocket‐sized liquid‐crystal televisions.Opt Lett 15(15):863–865

    Google Scholar 

  142. Yu FTS, Jutamulia S, Yin S (eds) (2001) Introduction to information optics.Academic Press, San Diego

    Google Scholar 

  143. Zhai H, Mu G, Sun J, Zhu X, Liu F, Kang H, Zhan Y (1999) Color pattern recognition in white-light joint transform correlation.Appl Opt 38(35):7238–7244

    Google Scholar 

Download references

Acknowledgments

DW thanks J. Paul Gibson and Cris Moore for interesting discussions. DW acknowledges Junta de Andalucia grant TIC-581, Science Foundation Ireland grant number 04/IN3/1524, and Irish Research Council for Science Engineering and Technology grant number PD/2004/33. TN acknowledges support from the European Commission through a Marie Curie Intra‐European Fellowship.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Naughton, T.J., Woods, D. (2012). Optical Computing. In: Meyers, R. (eds) Computational Complexity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1800-9_135

Download citation

Publish with us

Policies and ethics