Computational Complexity

2012 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Optical Computing

  • Thomas J. Naughton
  • Damien Woods
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-1800-9_135

Article Outline

Glossary

Definition of the Subject

Introduction

History

Selected Elements of Optical Computing Systems

Continuous Space Machine (CSM)

Example CSM Datastructures and Algorithms

C2-CSM

Optical Computing and Computational Complexity

Future Directions

Acknowledgments

Bibliography

Keywords

Polynomial Time Turing Machine Optical Computer Optical Computing Optical Implementation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

DW thanks J. Paul Gibson and Cris Moore for interesting discussions. DW acknowledges Junta de Andalucia grant TIC-581, Science Foundation Ireland grant number 04/IN3/1524, and Irish Research Council for Science Engineering and Technology grant number PD/2004/33. TN acknowledges support from the European Commission through a Marie Curie Intra‐European Fellowship.

Bibliography

  1. 1.
    Abushagur MAG, Caulfield HJ (1987) Speed and convergence of bimodal optical computers. Opt Eng 26(1):22–27Google Scholar
  2. 2.
    Adleman LM (1994) Molecular computation of solutions to combinatorial problems.Science 266:1021–1024Google Scholar
  3. 3.
    Alhazov A, de Jesús Pérez–Jiménez M (2007) Uniform solution to QSAT using polarizationless active membranes. In: Durand–Lose J, Margenstern M (eds) Machines, Computations and Universality (MCU). LNCS, vol 4664. Springer, Orléans, pp 122–133Google Scholar
  4. 4.
    Armitage JD, Lohmann AW (1965) Character recognition by incoherent spatial filtering. Appl Opt 4(4):461–467Google Scholar
  5. 5.
    Arsenault HH, Sheng Y (1992) An Introduction to Optics in Computers. Tutorial Texts in Optical Engineering, vol TT8. SPIE Press, Bellingham, WashingtonGoogle Scholar
  6. 6.
    Arsenault HH, Hsu YN, Chalasinska–Macukow K (1984) Rotation‐invariant pattern recognition. Opt Eng 23(6):705–709Google Scholar
  7. 7.
    Balcázar JL, Díaz J, Gabarró J (1988) Structural complexity, vols I and II. EATCS Monographs on Theoretical Computer Science. Springer, BerlinGoogle Scholar
  8. 8.
    Beyette Jr FR, Mitkas PA, Feld SA, Wilmsen CW (1994) Bitonic sorting using an optoelectronic recirculating architecture.Appl Opt 33(35):8164–8172Google Scholar
  9. 9.
    Borodin A (1977) On relating time and space to size and depth.SIAM J Comput 6(4):733–744MathSciNetMATHGoogle Scholar
  10. 10.
    Bracewell RN (1978) The Fourier transform and its applications, 2nd edn. Electrical and electronic engineering series, McGraw–Hill, New YorkGoogle Scholar
  11. 11.
    Brenner KH, Huang A, Streibl N (1986) Digital optical computing with symbolic substitution. Appl Opt 25(18):3054–3060Google Scholar
  12. 12.
    Brenner KH, Kufner M, Kufner S (1990) Highly parallel arithmetic algorithms for a digital optical processor using symbolic substitution logic.Appl Opt 29(11):1610–1618Google Scholar
  13. 13.
    Casasent DP (1984) Unified synthetic discriminant function computational formulation.Appl Opt 23:1620–1627Google Scholar
  14. 14.
    Casasent DP, House GP (1994) Comparison of coherent and noncoherent optical correlators. In: Optical Pattern Recognition V. Proceedings of SPIE, vol 2237. SPIE, Bellingham, pp 170–178Google Scholar
  15. 15.
    Casasent DP, House GP (1994) Implementation issues for a noncoherent optical correlator. In: Optical Pattern Recognition V.Proceedings of SPIE, vol 2237. SPIE, Bellingham, pp 179–188Google Scholar
  16. 16.
    Casasent DP, Psaltis D (1976) Position, rotation, and scale invariant optical correlation.Appl Opt 15(7):1795–1799Google Scholar
  17. 17.
    Casasent DP, Psaltis D (1976) Scale invariant optical transforms.Opt Eng 15(3):258–261Google Scholar
  18. 18.
    Casasent DP, Jackson J, Neuman CP (1983) Frequency‐multiplexed and pipelined iterative optical systolic array processors.Appl Opt 22:115–124Google Scholar
  19. 19.
    Caulfield HJ (ed) (1979) Handbook of Optical Holography. Academic Press, New YorkGoogle Scholar
  20. 20.
    Caulfield HJ (1989) Computing with light. Byte 14:231–237Google Scholar
  21. 21.
    Caulfield HJ (1989) The energetic advantage of analog over digital computing. In: OSA Optical Computing Technical Digest Series, vol 9. Optical Society of America, Washington, pp 180–183Google Scholar
  22. 22.
    Caulfield HJ (1990) Space-time complexity in optical computing. In: Javidi B (ed) Optical information‐processing systems and architectures II. SPIE, vol 1347. SPIE Press, Bellingham, pp 566–572Google Scholar
  23. 23.
    Caulfield HJ, Abushagur MAG (1986) Hybrid analog‐digital algebra processors.In: Optical and Hybrid Computing II. Proceedings of SPIE, vol 634. SPIE Press, Bellingham, pp 86–95Google Scholar
  24. 24.
    Caulfield HJ, Haimes R (1980) Generalized matched filtering.Appl Opt 19(2):181–183Google Scholar
  25. 25.
    Caulfield HJ, Horvitz S, Winkle WAV (1977) Introduction to the special issue on optical computing. Proceedings of the IEEE 65(1):4–5Google Scholar
  26. 26.
    Caulfield HJ, Rhodes WT, Foster MJ, Horvitz S (1981) Optical implementation of systolic array processing. Opt Commun 40:86–90Google Scholar
  27. 27.
    Caulfield HJ, Kinser JM, Rogers SK (1989) Optical neural networks.Proc IEEE 77:1573–1582Google Scholar
  28. 28.
    Cerf NJ, Adami C, Kwiat PG (1998) Optical simulation of quantum logic.Phys Rev A 57(3):R1477–R1480MathSciNetGoogle Scholar
  29. 29.
    Chandra AK, Stockmeyer LJ (1976) Alternation. In: 17th annual symposium on Foundations of Computer Science, IEEE, Houston, Texas, pp 98–108Google Scholar
  30. 30.
    Chandra AK, Kozen DC, Stockmeyer LJ (1981) Alternation.J ACM 28(1):114–133MathSciNetMATHGoogle Scholar
  31. 31.
    Chang S, Arsenault HH, Garcia–Martinez P, Grover CP (2000) Invariant pattern recognition based on centroids.Appl Opt 39(35):6641–6648Google Scholar
  32. 32.
    Chen FS, LaMacchia JT, Fraser DB (1968) Holographic storage in lithium niobate.Appl Phys Lett 13(7):223–225Google Scholar
  33. 33.
    Chiou AE (1999) Photorefractive phase‐conjugate optics for image processing, trapping, and manipulation of microscopic objects.Proc IEEE 87(12):2074–2085Google Scholar
  34. 34.
    Clavero R, Ramos F, Martí J (2005) All‐optical flip-flop based on an active Mach–Zehnder interferometer with a feedback loop.Opt Lett 30(21):2861–2863Google Scholar
  35. 35.
    Cutrona LJ, Leith EN, Palermo CJ, Porcello LJ (1960) Optical data processing and filtering systems.IRE Trans Inf Theory 6(3):386–400MathSciNetGoogle Scholar
  36. 36.
    Cutrona LJ, Leith EN, Porcello LJ, Vivian WE (1966) On the application of coherent optical processing techniques to synthetic‐aperture radar.Proc IEEE 54(8):1026–1032Google Scholar
  37. 37.
    Desmulliez MPY, Wherrett BS, Waddie AJ, Snowdon JF, Dines JAB (1996) Performance analysis of self‐electro‐optic‐effect‐device‐based (seed‐based) smart-pixel arrays used in data sorting. Appl Opt 35(32):6397–6416Google Scholar
  38. 38.
    Dolev S, Fitoussi H (2007) The traveling beam: optical solution for bounded NP‐complete problems. In: Crescenzi P, Prencipe G, Pucci G (eds) The fourth international conference on fun with algorithms (FUN). Springer, Heidelberg, pp 120–134Google Scholar
  39. 39.
    Dorren HJS, Hill MT, Liu Y, Calabretta N, Srivatsa A, Huijskens FM, de Waardt H, Khoe GD (2003) Optical packet switching and buffering by using all‐optical signal processing methods.J Lightwave Technol 21(1):2–12Google Scholar
  40. 40.
    Durand–Lose J (2006) Reversible conservative rational abstract geometrical computation is Turing‐universal. In: Logical Approaches to Computational Barriers, Second Conference on Computability in Europe, (CiE). Lecture Notes in Computer Science. Springer, Swansea, vol 3988. pp 163–172Google Scholar
  41. 41.
    Efron U, Grinberg J, Braatz PO, Little MJ, Reif PG, Schwartz RN (1985) The silicon liquid crystal light valve.J Appl Phys 57(4):1356+Google Scholar
  42. 42.
    Esteve–Taboada JJ, García J, Ferreira C (2000) Extended scale‐invariant pattern recognition with white-light illumination.Appl Opt 39(8):1268–1271Google Scholar
  43. 43.
    Farhat NH, Psaltis D (1984) New approach to optical information processing based on the Hopfield model.J Opt Soc Am A 1:1296Google Scholar
  44. 44.
    Feitelson DG (1988) Optical Computing: A survey for computer scientists. MIT Press, Cambridge, MassachusettsGoogle Scholar
  45. 45.
    Feng JH, Chin GF, Wu MX, Yan SH, Yan YB (1995) Multiobject recognition in a multichannel joint‐transform correlator.Opt Lett 20(1):82–84Google Scholar
  46. 46.
    Fortune S, Wyllie J (1978) Parallelism in random access machines. In: Proc. 10th Annual ACM Symposium on Theory of Computing, ACM, New York, pp 114–118Google Scholar
  47. 47.
    Gabor D (1948) A new microscopic principle. Nature 161(4098):777–778Google Scholar
  48. 48.
    Gara AD (1979) Real time tracking of moving objects by optical correlation. Appl Opt 18(2):172–174Google Scholar
  49. 49.
    Geldenhuys R, Liu Y, Calabretta N, Hill MT, Huijskens FM, Khoe GD, Dorren HJS (2004) All‐optical signal processing for optical packet switching.J Opt Netw 3(12):854–865Google Scholar
  50. 50.
    Ghosh AK, Casasent DP, Neuman CP (1985) Performance of direct and iterative algorithms on an optical systolic processor.Appl Opt 24(22):3883–3892Google Scholar
  51. 51.
    Goldberg L, Lee SH (1979) Integrated optical half adder circuit.Appl Opt 18:2045–2051Google Scholar
  52. 52.
    Goldschlager LM (1977) Synchronous parallel computation. Ph D thesis, University of Toronto, Computer Science DepartmentGoogle Scholar
  53. 53.
    Goldschlager LM (1978) A unified approach to models of synchronous parallel machines. In: Proc. 10th Annual ACM Symposium on Theory of Computing. ACM, New York, pp 89–94Google Scholar
  54. 54.
    Goldschlager LM (1982) A universal interconnection pattern for parallel computers.J ACM 29(4):1073–1086MathSciNetMATHGoogle Scholar
  55. 55.
    Goodman JW (1977) Operations achievable with coherent optical information processing systems.Proc IEEE 65(1):29–38Google Scholar
  56. 56.
    Goodman JW (2005) Introduction to Fourier Optics, 3rd edn. Roberts & Company, EnglewoodGoogle Scholar
  57. 57.
    Grinberg J, Jacobson AD, Bleha WP, Miller L, Fraas L, Boswell D, Myer G (1975) A new real-time noncoherent to coherent light image converter: The hybrid field effect liquid crystal light valve.Opt Eng 14(3):217–225Google Scholar
  58. 58.
    Grover LK (1996) A fast quantum mechanical algorithm for database search. In: Proc. 28th Annual ACM Symposium on Theory of Computing. ACM, New York, pp 212–219Google Scholar
  59. 59.
    Guilfoyle PS, Hessenbruch JM, Stone RV (1998) Free-space interconnects for high‐performance optoelectronic switching.IEEE Comp 31(2):69–75Google Scholar
  60. 60.
    Haist T, Osten W (2007) An optical solution for the travelling salesman problem.Opt Expr 15(16):10473–10482Google Scholar
  61. 61.
    Hartmanis J, Simon J (1974) On the power of multiplication in random access machines. In: Proceedings of the 15th annual symposium on switching and automata theory. IEEE, The University of New Orleans, pp 13–23Google Scholar
  62. 62.
    Head T (1987) Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors.Bull Math Biol 49(6):737–759MathSciNetMATHGoogle Scholar
  63. 63.
    Horner JL (ed) (1987) Optical Signal Processing. Academic Press, San DiegoGoogle Scholar
  64. 64.
    Hough PVC (1962) Methods and measures for recognising complex patterns. U.S. Patent No. 3069654Google Scholar
  65. 65.
    Hsu KY, Li HY, Psaltis D (1990) Holographic implementation of a fully connected neural network.Proc IEEE 78(10):1637–1645Google Scholar
  66. 66.
    Hsu YN, Arsenault HH (1982) Optical pattern recognition using circular harmonic expansion.Appl Opt 21(22):4016–4019Google Scholar
  67. 67.
    Huang A (1984) Architectural considerations involved in the design of an optical digital computer.Proc IEEE 72(7):780–786Google Scholar
  68. 68.
    Huang A, Tsunoda Y, Goodman JW, Ishihara S (1979) Optical computation using residue arithmetic.Appl Opt 18(2):149–162Google Scholar
  69. 69.
    Jacobson AD, Beard TD, Bleha WP, Morgerum JD, Wong SY (1972) The liquid crystal light value, an optical-to‐optical interface device. In: Proceedings of the Conference on Parallel Image Processing, document X-711-72-308, Goddard Space Flight Center. NASA, Washington, pp 288–299Google Scholar
  70. 70.
    Javidi B (1989) Nonlinear joint power spectrum based optical correlation. Appl Opt 28(12):2358–2367Google Scholar
  71. 71.
    Javidi B (1990) Generalization of the linear matched filter concept to nonlinear matched filters.Appl Opt 29(8):1215–1217Google Scholar
  72. 72.
    Javidi B, Wang J (1995) Optimum distortion‐invariant filter for detecting a noisy distorted target in nonoverlapping background noise.J Opt Soc Am A 12(12):2604–2614Google Scholar
  73. 73.
    Karim MA, Awwal AAS (1992) Optical Computing: An Introduction. Wiley, New YorkGoogle Scholar
  74. 74.
    Karp RM, Ramachandran V (1990) Parallel algorithms for shared memory machines.In: van Leeuwen J (ed) Handbook of Theoretical Computer Science, vol A.Elsevier, Amsterdam, pp 869–941Google Scholar
  75. 75.
    Knill E, LaFlamme R, Milburn GJ (2001) A scheme for efficient quantum computation with linear optics. Nature 409:46–52Google Scholar
  76. 76.
    Lee JN (ed) (1995) Design Issues in Optical Processing.Cambridge Studies in Modern Optics. Cambridge University Press, CambridgeGoogle Scholar
  77. 77.
    Lee JN (ed) (1995) Design issues in optical processing.Cambridge studies in modern optics. Cambridge University Press, CambridgeGoogle Scholar
  78. 78.
    Leith EN (1977) Complex spatial filters for image deconvolution.Proc IEEE 65(1):18–28Google Scholar
  79. 79.
    Lenslet Labs (2001) Optical digital signal processing engine. white paper report, Lenslet Ltd., 12 Hachilazon St., Ramat–Gan, Israel 52522Google Scholar
  80. 80.
    Lipton RJ (1995) Using DNA to solve NP‐complete problems.Science 268:542–545Google Scholar
  81. 81.
    Lohmann AW (1993) Image rotation, Wigner rotation, and the fractional Fourier transform.J Opt Soc Am A 10(10):2181–2186MathSciNetGoogle Scholar
  82. 82.
    Louri A, Post A (1992) Complexity analysis of optical‐computing paradigms.Appl Opt 31(26):5568–5583Google Scholar
  83. 83.
    Louri A, Hatch Jr JA, Na J (1995) Constant‐time parallel sorting algorithm and its optical implementation using smart pixels.Appl Opt 34(17):3087–3097Google Scholar
  84. 84.
    Lu XJ, Yu FTS, Gregory DA (1990) Comparison of Vander lugt and joint transform correlators. Appl Phys B 51:153–164Google Scholar
  85. 85.
    McAulay AD (1991) Optical Computer Architectures: The Application of Optical Concepts to Next Generation Computers. Wiley, New YorkGoogle Scholar
  86. 86.
    Mead C (1989) Analog VLSI and Neural Systems. Addison–Wesley, ReadingMATHGoogle Scholar
  87. 87.
    Miller DA (2000) Rationale and challenges for optical interconnects to electronic chips.Proc IEEE 88(6):728–749Google Scholar
  88. 88.
    Moore C (1991) Generalized shifts: undecidability and unpredictability in dynamical systems.Nonlinearity 4:199–230MathSciNetMATHGoogle Scholar
  89. 89.
    Moore C (1997) Majority‐vote cellular automata, Ising dynamics and P‑completeness.J Stat Phys 88(3/4):795–805MATHGoogle Scholar
  90. 90.
    Naughton T, Javadpour Z, Keating J, Klíma M, Rott J (1999) General‐purpose acousto‐optic connectionist processor.Opt Eng 38(7):1170–1177Google Scholar
  91. 91.
    Naughton TJ (2000) Continuous‐space model of computation is Turing universal. In: Bains S, Irakliotis LJ (eds) Critical Technologies for the Future of Computing. Proc SPIE, vol 4109. San Diego, pp 121–128Google Scholar
  92. 92.
    Naughton TJ (2000) A model of computation for Fourier optical processors. In: Lessard RA, Galstian T (eds) Optics in Computing 2000. Proc SPIE, vol 4089.Quebec, pp 24–34Google Scholar
  93. 93.
    Naughton TJ, Woods D (2001) On the computational power of a continuous‐space optical model of computation. In: Margenstern M, Rogozhin Y (eds) Machines, Computations and Universality: Third International Conference (MCU'01).LNCS, vol 2055. Springer, Heidelberg, pp 288–299Google Scholar
  94. 94.
    Oltean M (2006) A light-based device for solving the Hamiltonian path problem. In: Fifth International Conference on Unconventional Computation (UC'06). LNCS, vol 4135. Springer, York, pp 217–227Google Scholar
  95. 95.
    O'Neill EL (1956) Spatial filtering in optics.IRE Trans Inf Theory 2:56–65Google Scholar
  96. 96.
    Paek EG, Choe JY, Oh TK, Hong JH, Chang TY (1997) Nonmechanical image rotation with an acousto‐optic dove prism.Opt Lett 22(15):1195–1197Google Scholar
  97. 97.
    Papadimitriou CH (1995) Computational complexity. Addison–Wesley, ReadingGoogle Scholar
  98. 98.
    Parberry I (1987) Parallel complexity theory. Wiley, New YorkMATHGoogle Scholar
  99. 99.
    Păun G (2002) Membrane computing: an introduction. Springer, HeidelbergGoogle Scholar
  100. 100.
    Pe'er A, Wang D, Lohmann AW, Friesem AA (1999) Optical correlation with totally incoherent light.Opt Lett 24(21):1469–1471Google Scholar
  101. 101.
    Pittman TB, Fitch MJ, Jacobs BC, Franson JD (2003) Experimental controlled-NOT logic gate for single photons in the coincidence basis.Phys Rev A 68:032316–3Google Scholar
  102. 102.
    Pratt VR, Stockmeyer LJ (1976) A characterisation of the power of vector machines.J Comput Syst Sci 12:198–221MathSciNetMATHGoogle Scholar
  103. 103.
    Pratt VR, Rabin MO, Stockmeyer LJ (1974) A characterisation of the power of vector machines. In: Proc 6th annual ACM symposium on theory of computing.ACM, New York, pp 122–134Google Scholar
  104. 104.
    Psaltis D, Farhat NH (1985) Optical information processing based on an associative‐memory model of neural nets with thresholding and feedback.Opt Lett 10(2):98–100Google Scholar
  105. 105.
    Pu A, Denkewalter RF, Psaltis D (1997) Real-time vehicle navigation using a holographic memory.Opt Eng 36(10):2737–2746Google Scholar
  106. 106.
    Reif J, Tygar D, Yoshida A (1990) The computability and complexity of optical beam tracing. In: 31st Annual IEEE Symposium on Foundations of Computer Science (FOCS). IEEE, St. Louis, pp 106–114Google Scholar
  107. 107.
    Reif JH, Tyagi A (1997) Efficient parallel algorithms for optical computing with the discrete Fourier transform (DFT) primitive.Appl Opt 36(29):7327–7340Google Scholar
  108. 108.
    Rhodes WT (1981) Acousto‐optic signal processing: convolution and correlation.Proc IEEE 69(1):65–79MathSciNetGoogle Scholar
  109. 109.
    Sawchuk AA, Strand TC (1984) Digital optical computing.Proc IEEE 72(7):758–779Google Scholar
  110. 110.
    Shaked NT, Simon G, Tabib T, Mesika S, Dolev S, Rosen J (2006) Optical processor for solving the traveling salesman problem (TSP). In: Javidi B, Psaltis D, Caulfield HJ (eds) Proc SPIE, Optical Information Systems IV, vol 63110G. SPIE, BellinghamGoogle Scholar
  111. 111.
    Shaked NT, Messika S, Dolev S, Rosen J (2007) Optical solution for bounded NP‐complete problems.Appl Opt 46(5):711–724Google Scholar
  112. 112.
    Shor P (1994) Algorithms for quantum computation: Discrete logarithms ande factoring. In: Proceedings 35th Annual Symposium on Foundations Computer Science. ACM, New York, pp 124–134Google Scholar
  113. 113.
    Sosík P (2003) The computational power of cell division in P systems: Beating down parallel computers?Nat Comput 2(3):287–298Google Scholar
  114. 114.
    Sosík P, Rodríguez–Patón A (2007) Membrane computing and complexity theory: A characterization of PSPACE.J Comput Syst Sci 73(1):137–152Google Scholar
  115. 115.
    Stirk CW, Athale RA (1988) Sorting with optical compare‐and‐exchange modules.Appl Opt 27(9):1721–1726Google Scholar
  116. 116.
    Stone RV (1994) Optoelectronic processor is programmable and flexible. Laser Focus World 30(8):77–79Google Scholar
  117. 117.
    Stone RV, Zeise FF, Guilfoyle PS (1991) DOC II 32-bit digital optical computer: optoelectronic hardware and software. In: Optical Enhancements to Computing Technology, Proc SPIE, vol 1563. SPIE, Bellingham, pp 267–278Google Scholar
  118. 118.
    Stroke GW, Halioua M, Thon F, Willasch DH (1974) Image improvement in high‐resolution electron microscopy using holographic image deconvolution.Optik 41(3):319–343Google Scholar
  119. 119.
    Sullivan DL (1972) Alignment of rotational prisms.Appl Opt 11(9):2028–2032Google Scholar
  120. 120.
    Tromp J, van Emde Boas P (1993) Associative storage modification machines. In: Ambos–Spies K, Homer S, Schöning U (eds) Complexity theory: current research. Cambridge University Press, pp 291–313Google Scholar
  121. 121.
    Turin GL (1960) An introduction to matched filters.IRE Trans Inf Theory 6(3):311–329MathSciNetGoogle Scholar
  122. 122.
    Upatnieks J (1983) Portable real-time coherent correlator.Appl Opt 22(18):2798–2803Google Scholar
  123. 123.
    VanderLugt A (1964) Signal detection by complex spatial filtering.IEEE Trans Inf Theory 10(2):139–145Google Scholar
  124. 124.
    VanderLugt A (1974) Coherent optical processing.Proc IEEE 62(10):1300–1319Google Scholar
  125. 125.
    VanderLugt A (1992) Optical Signal Processing. Wiley, New YorkGoogle Scholar
  126. 126.
    van Emde Boas P (1990) Machine models and simulations. In: van Leeuwen J (ed) Handbook of Theoretical Computer Science, vol A. Elsevier, Amsterdam, chap 1Google Scholar
  127. 127.
    van Leeuwen J, Wiedermann J (1987) Array processing machines. BIT 27:25–43MathSciNetMATHGoogle Scholar
  128. 128.
    Wang CH, Jenkins BK (1990) Subtracting incoherent optical neuron model – Analysis, experiment and applications.Appl Opt 29(14):2171–2186Google Scholar
  129. 129.
    Wang PY, Saffman M (1999) Selecting optical patterns with spatial phase modulation.Opt Lett 24(16):1118–1120Google Scholar
  130. 130.
    Weaver CS, Goodman JW (1966) A technique for optically convolving two functions.Appl Opt 5(7):1248–1249Google Scholar
  131. 131.
    Woods D (2005) Computational complexity of an optical model of computation. Ph D thesis, National University of Ireland, MaynoothGoogle Scholar
  132. 132.
    Woods D (2005) Upper bounds on the computational power of an optical model of computation. In: Deng X, Du D (eds) 16th International Symposium on Algorithms and Computation (ISAAC 2005). LNCS, vol 3827. Springer, Heidelberg, pp 777–788Google Scholar
  133. 133.
    Woods D (2006) Optical computing and computational complexity. In: Fifth International Conference on Unconventional Computation (UC'06). LNCS, vol 4135. Springer, pp 27–40Google Scholar
  134. 134.
    Woods D, Gibson JP (2005) Complexity of continuous space machine operations. In: Cooper SB, Löewe B, Torenvliet L (eds) New Computational Paradigms, First Conference on Computability in Europe (CiE 2005). LNCS, vol 3526. Springer, Amsterdam, pp 540–551Google Scholar
  135. 135.
    Woods D, Gibson JP (2005) Lower bounds on the computational power of an optical model of computation. In: Calude CS, Dinneen MJ, Păun G, Pérez–Jiménez MJ, Rozenberg G (eds) Fourth International Conference on Unconventional Computation (UC'05). LNCS, vol 3699. Springer, Heidelberg, pp 237–250Google Scholar
  136. 136.
    Woods D, Naughton TJ (2005) An optical model of computation.Theor Comput Sci 334(1–3):227–258MathSciNetMATHGoogle Scholar
  137. 137.
    Woods D, Naughton TJ (2008) Parallel and sequential optical computing. In: International Workshop on Optical SuperComputing. LNCS. Springer, HeidelbergGoogle Scholar
  138. 138.
    Yamaguchi I, Zhang T (1997) Phase‐shifting digital holography. Opt Lett 22(16):1268–1270Google Scholar
  139. 139.
    Yokomori T (2002) Molecular computing paradigm – toward freedom from Turing's charm.Nat Comput 1(4):333–390MathSciNetMATHGoogle Scholar
  140. 140.
    Yu FTS (1996) Garden of joint transform correlators: an account of recent advances. In: Second International Conference on Optical Information Processing. Proc SPIE, vol 2969. SPIE, Bellingham, pp 396–401Google Scholar
  141. 141.
    Yu FTS, Lu T, Yang X, Gregory DA (1990) Optical neural network with pocket‐sized liquid‐crystal televisions.Opt Lett 15(15):863–865Google Scholar
  142. 142.
    Yu FTS, Jutamulia S, Yin S (eds) (2001) Introduction to information optics.Academic Press, San DiegoGoogle Scholar
  143. 143.
    Zhai H, Mu G, Sun J, Zhu X, Liu F, Kang H, Zhan Y (1999) Color pattern recognition in white-light joint transform correlation.Appl Opt 38(35):7238–7244Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Thomas J. Naughton
    • 2
    • 3
  • Damien Woods
    • 1
    • 4
  1. 1.Department of Computer ScienceUniversity College CorkCorkIreland
  2. 2.Department of Computer ScienceNational University of IrelandMaynooth County KildareIreland
  3. 3.Oulu Southern InstituteUniversity of Oulu, RFMedia LaboratoryYlivieskaFinland
  4. 4.Department of Computer Sience and Artificial IntelligenceUniversity if SevilleSevilleSpain