Skip to main content

Non-standard Analysis , an Invitation to

  • Reference work entry
  • 281 Accesses

Article Outline

Glossary

Definition of the Subject

Introduction

Pre-Robinson Infinitesimals

Hyperreals

General Idea of NSA

Loeb Construction

A Future for Non-standard Analysis?

Bibliography

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,500.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Hyperreal:

A proper extension of the real numbers, containing infinities and infinitesimal numbers, such that a transfer principle allows first-order theorems in the reals to be extended therein.

Infinity:

An element in an ordered field which is larger than \( { 1+1+1+\cdots+1 } \) for any number of 1's.

Infinitesimal:

An element in an ordered field whose absolute value is less than \( { 1/n } \) for any positive integer n.

Non-archimedean:

Infinitesimal or infinite values exist in an ordered field.

Transfer principle:

A rule which transforms assertions about standard sets, mappings, etc., into one about internal sets, mappings. Intuitively, it is an elementary embedding between structures.

Bibliography

  1. AlbeverioS, Fenstad JE, Hoegh-Krohn R, Lindstrøm T (1986) Nonstandard Methods in StochasticAnalysis and Mathematical Physics. Bull Am Math Soc 17(2):385–389

    Google Scholar 

  2. Bernstein A, Robinson A (eds) (1966) Solution of an invariant subspace problemof KT Smith and PR Halmos. Pacific J Math 16(3):421–431

    Google Scholar 

  3. Halmos P (1966) Invariant subspaces for Polynomially Compact Operators. PacificJ Math 16(3):433–437

    Article  MathSciNet  MATH  Google Scholar 

  4. Kamae T (1982) A simple proof of the ergodic theorem using nonstandardanalysis. Israel J Math 42(4):284–290

    Article  MathSciNet  MATH  Google Scholar 

  5. Keisler HJ (1986) An Infinitesimal Approach to Stochastic Analysis. J Symb Logic51(3):822–824 now included In: (1984) Mem Amer Math Soc 297

    Article  MathSciNet  Google Scholar 

  6. Keisler HJ (1986) Elementary Calculus: An Approach Using Infinitesimals, 2ndedn. Now available at http://www.math.wisc.edu/~keisler/calc.html

  7. KelleyJL (1975) General Topology. Springer, New York

    MATH  Google Scholar 

  8. Loeb PA, Wolff MPH (2000) Nonstandard Analysis for the WorkingMathematician. Math. Appl., vol. 510; Kluwer, Dordrecht

    Book  Google Scholar 

  9. Nelson E (1977) Internal Set Theory A New Approach to Nonstandard Analysis. BullAm Math Soc 83(6):1165–1198; Also see http://www.math.princeton.edu/~nelson/books/1.pdf

    Article  MATH  Google Scholar 

  10. NelsonE (1989) Radically Elementary Probability Theory. Bull Am Math Soc 20(2):240–243

    Article  Google Scholar 

  11. Robert A (1985) Nonstandard Analysis. Bull Am Math Soc 16(2):298–306

    Google Scholar 

  12. Robinson A (1966) Non‐standardanalysis, rev edn.North Holland, Amsterdam

    Google Scholar 

  13. Schmieden C, Laugwitz D (1958) Eine Erweiterung derInfinitesimalrechnung. Math Zeit 69:1–39

    Article  MathSciNet  MATH  Google Scholar 

  14. van den Dries L, Wilkie AJ (1984) Gromov's Theorem on Groups of PolynomialGrowth and Elementary Logic. J Algebra 89:349–374

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Yang, WZ. (2012). Non-standard Analysis , an Invitation to. In: Meyers, R. (eds) Computational Complexity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1800-9_133

Download citation

Publish with us

Policies and ethics