Computational Complexity

2012 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

ArtificialChemistry

  • Peter Dittrich
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-1800-9_13

Article Outline

Glossary

Definition of the Subject

Introduction

Basic Building Blocks of an Artificial Chemistry

Structure-to‐Function Mapping

Space

Theory

Evolution

Information Processing

Future Directions

Bibliography

Keywords

Molecular Species Turing Machine Reaction Network Binary String Stoichiometric Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

Primary Literature

  1. 1.
    Adami C, Brown CT (1994) Evolutionary learning in the 2D artificial life system avida. In: Brooks RA, Maes P (eds) Prof artificial life IV. MIT Press, Cambridge, pp 377–381. ISBN 0-262-52190-3Google Scholar
  2. 2.
    Adleman LM (1994) Molecular computation of solutions to combinatorical problems. Science 266:1021CrossRefGoogle Scholar
  3. 3.
    Bagley RJ, Farmer JD (1992) Spontaneous emergence of a metabolism. In: Langton CG, Taylor C, Farmer JD, Rasmussen S (eds) Artificial life II. Addison‐Wesley, Redwood City, pp 93–140. ISBN 0-201-52570-4Google Scholar
  4. 4.
    Banâtre J-P, Métayer DL (1986) A new computational model and its discipline of programming. Technical Report RR-0566. INRIA, RennesGoogle Scholar
  5. 5.
    Banzhaf W (1993) Self‐replicating sequences of binary numbers – foundations I and II: General and strings of length n = 4. Biol Cybern 69:269–281zbMATHCrossRefGoogle Scholar
  6. 6.
    Banzhaf W (1994) Self‐replicating sequences of binary numbers: The build-up of complexity. Complex Syst 8:215–225zbMATHGoogle Scholar
  7. 7.
    Banzhaf W (1995) Self‐organizing algorithms derived from RNA interactions. In: Banzhaf W, Eeckman FH (eds) Evolution and Biocomputing. LNCS, vol 899. Springer, Berlin, pp 69–103CrossRefGoogle Scholar
  8. 8.
    Banzhaf W, Dittrich P, Rauhe H (1996) Emergent computation by catalytic reactions. Nanotechnology 7(1):307–314CrossRefGoogle Scholar
  9. 9.
    Benkö G, Flamm C, Stadler PF (2003) A graph-based toy model of chemistry. J Chem Inf Comput Sci 43(4):1085–1093. doi:10.1021/ci0200570Google Scholar
  10. 10.
    Bersini H (2000) Reaction mechanisms in the oo chemistry. In: Bedau MA, McCaskill JS, Packard NH, Rasmussen S (eds) Artificial life VII. MIT Press, Cambridge, pp 39–48Google Scholar
  11. 11.
    Boerlijst MC, Hogeweg P (1991) Spiral wave structure in pre‐biotic evolution: Hypercycles stable against parasites. Physica D 48(1):17–28zbMATHCrossRefGoogle Scholar
  12. 12.
    Breyer J, Ackermann J, McCaskill J (1999) Evolving reaction‐diffusion ecosystems with self‐assembling structure in thin films. Artif Life 4(1):25–40CrossRefGoogle Scholar
  13. 13.
    Conrad M (1992) Molecular computing: The key-lock paradigm. Computer 25:11–22CrossRefGoogle Scholar
  14. 14.
    Dewdney AK (1984) In the game called core war hostile programs engage in a battle of bits. Sci Amer 250:14–22CrossRefGoogle Scholar
  15. 15.
    Dittrich P (2001) On artificial chemistries. Ph D thesis, University of DortmundGoogle Scholar
  16. 16.
    Dittrich P, Banzhaf W (1998) Self‐evolution in a constructive binary string system. Artif Life 4(2):203–220CrossRefGoogle Scholar
  17. 17.
    Dittrich P, Speroni di Fenizio P (2007) Chemical organization theory. Bull Math Biol 69(4):1199–1231. doi:10.1007/s11538-006-9130-8MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Ehricht R, Ellinger T, McCascill JS (1997) Cooperative amplification of templates by cross‐hybridization (CATCH). Eur J Biochem 243(1/2):358–364CrossRefGoogle Scholar
  19. 19.
    Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58(10):465–523Google Scholar
  20. 20.
    Eigen M, Schuster P (1977) The hypercycle: A principle of natural self‐organisation, part A. Naturwissenschaften 64(11):541–565Google Scholar
  21. 21.
    Érdi P, Tóth J (1989) Mathematical models of chemical reactions: Theory and applications of deterministic and stochastic models. Pinceton University Press, PrincetonGoogle Scholar
  22. 22.
    Faeder JR, Blinov ML, Goldstein B, Hlavacek WS (2005) Rule-based modeling of biochemical networks. Complexity. doi:10.1002/cplx.20074Google Scholar
  23. 23.
    Farmer JD, Kauffman SA, Packard NH (1986) Autocatalytic replication of polymers. Physica D 22:50–67MathSciNetCrossRefGoogle Scholar
  24. 24.
    Fernando C, Rowe J (2007) Natural selection in chemical evolution. J Theor Biol 247(1):152–167. doi:10.1016/j.jtbi.2007.01.028MathSciNetCrossRefGoogle Scholar
  25. 25.
    Fernando C, von Kiedrowski G, Szathmáry E (2007) A stochastic model of nonenzymatic nucleic acid replication: Elongators sequester replicators. J Mol Evol 64(5):572–585. doi:10.1007/s00239-006-0218-4Google Scholar
  26. 26.
    Fontana W (1992) Algorithmic chemistry. In: Langton CG, Taylor C, Farmer JD, Rasmussen S (eds) Artificial life II. Addison‐Wesley, Redwood City, pp 159–210Google Scholar
  27. 27.
    Fontana W, Buss LW (1994) ‘The arrival of the fittest’: Toward a theory of biological organization. Bull Math Biol 56:1–64zbMATHGoogle Scholar
  28. 28.
    Fontana W, Buss LW (1996) The barrier of objects: From dynamical systems to bounded organization. In: Casti J, Karlqvist A (eds) Boundaries and barriers. Addison‐Wesley, Redwood City, pp 56–116Google Scholar
  29. 29.
    Furusawa C, Kaneko K (1998) Emergence of multicellular organisms with dynamic differentiation and spatial pattern. Artif Life 4:79–93CrossRefGoogle Scholar
  30. 30.
    Gánti T (1975) Organization of chemical reactions into dividing and metabolizing units: The chemotons. Biosystems 7(1):15–21Google Scholar
  31. 31.
    Giavitto J-L, Michel O (2001) MGS: A rule-based programming language for complex objects and collections. Electron Note Theor Comput Sci 59(4):286–304CrossRefGoogle Scholar
  32. 32.
    Gillespie DT (1976) General method for numerically simulating stochastic time evolution of coupled chemical‐reaction. J Comput Phys 22(4):403–434MathSciNetCrossRefGoogle Scholar
  33. 33.
    Grzybowski BA, Stone HA, Whitesides GM (2000) Dynamic self‐assembly of magnetized, millimetre‐sized objects rotating at a liquid‐air interface. Nature 405(6790):1033–1036CrossRefGoogle Scholar
  34. 34.
    Hlavacek W, Faeder J, Blinov M, Posner R, Hucka M, Fontana W (2006) Rules for modeling signal‐transduction systems. Sci STKE 2006:re6Google Scholar
  35. 35.
    Hofbauer J, Sigmund K (1988) Dynamical systems and the theory of evolution. University Press, CambridgezbMATHGoogle Scholar
  36. 36.
    Hofstadter DR (1979) Gödel, Escher, Bach: An eternal golden braid. Basic Books Inc, New York. ISBN 0-465-02685-0Google Scholar
  37. 37.
    Hordijk W, Crutchfield JP, Mitchell M (1996) Embedded‐particle computation in evolved cellular automata. In: Toffoli T, Biafore M, Leäo J (eds) PhysComp96. New England Complex Systems Institute, Cambridge, pp 153–8Google Scholar
  38. 38.
    Hosokawa K, Shimoyama I, Miura H (1994) Dynamics of self‐assembling systems: Analogy with chemical kinetics. Artif Life 1(4):413–427CrossRefGoogle Scholar
  39. 39.
    Hutton TJ (2002) Evolvable self‐replicating molecules in an artificial chemistry. Artif Life 8(4):341–356MathSciNetCrossRefGoogle Scholar
  40. 40.
    Ikegami T, Hashimoto T (1995) Active mutation in self‐reproducing networks of machines and tapes. Artif Life 2(3):305–318CrossRefGoogle Scholar
  41. 41.
    Jain S, Krishna S (1998) Autocatalytic sets and the growth of complexity in an evolutionary model. Phys Rev Lett 81(25):5684–5687CrossRefGoogle Scholar
  42. 42.
    Jain S, Krishna S (1999) Emergence and growth of complex networks in adaptive systems. Comput Phys Commun 122:116–121Google Scholar
  43. 43.
    Jain S, Krishna S (2001) A model for the emergence of cooperation, interdependence, and structure in evolving networks. Proc Natl Acad Sci USA 98(2):543–547CrossRefGoogle Scholar
  44. 44.
    Jain S, Krishna S (2002) Large extinctions in an evolutionary model: The role of innovation and keystone species. Proc Natl Acad Sci USA 99(4):2055–2060. doi:10.1073/pnas.032618499MathSciNetCrossRefGoogle Scholar
  45. 45.
    Kaneko K (2007) Life: An introduction to complex systems biology. Springer, BerlinGoogle Scholar
  46. 46.
    Kauffman SA (1971) Cellular homeostasis, epigenesis and replication in randomly aggregated macromolecular systems. J Cybern 1:71–96CrossRefGoogle Scholar
  47. 47.
    Kauffman SA (1986) Autocatalytic sets of proteins. J Theor Biol 119:1–24CrossRefGoogle Scholar
  48. 48.
    Kauffman SA (1993) The origins of order: Self‐organization and selection in evolution. Oxford University Press, New YorkGoogle Scholar
  49. 49.
    Kirner T, Ackermann J, Ehricht R, McCaskill JS (1999) Complex patterns predicted in an in vitro experimental model system for the evolution of molecular cooperation. Biophys Chem 79(3):163–86CrossRefGoogle Scholar
  50. 50.
    Kniemeyer O, Buck‐Sorlin GH, Kurth W (2004) A graph grammar approach to artificial life. Artif Life 10(4):413–431. doi:10.1162/1064546041766451Google Scholar
  51. 51.
    Laing R (1972) Artificial organisms and autonomous cell rules. J Cybern 2(1):38–49CrossRefGoogle Scholar
  52. 52.
    Laing R (1975) Some alternative reproductive strategies in artificial molecular machines. J Theor Biol 54:63–84MathSciNetCrossRefGoogle Scholar
  53. 53.
    Laing R (1977) Automaton models of reproduction by self‐inspection. J Theor Biol 66:437–56MathSciNetCrossRefGoogle Scholar
  54. 54.
    Langton CG (1984) Self‐reproduction in cellular automata. Physica D 10D(1–2):135–44CrossRefGoogle Scholar
  55. 55.
    Langton CG (1989) Artificial life. In: Langton CG (ed) Proc of artificial life. Addison‐Wesley, Redwood City, pp 1–48Google Scholar
  56. 56.
    Lazcano A, Bada JL (2003) The 1953 Stanley L. Miller experiment: Fifty years of prebiotic organic chemistry. Orig Life Evol Biosph 33(3):235–42CrossRefGoogle Scholar
  57. 57.
    Lenaerts T, Bersini H (2009) A synthon approach to artificial chemistry. Artif Life 9 (in press)Google Scholar
  58. 58.
    Lenski RE, Ofria C, Collier TC, Adami C (1999) Genome complexity, robustness and genetic interactions in digital organisms. Nature 400(6745):661–4CrossRefGoogle Scholar
  59. 59.
    Lohn JD, Colombano S, Scargle J, Stassinopoulos D, Haith GL (1998) Evolution of catalytic reaction sets using genetic algorithms. In: Proc IEEE International Conference on Evolutionary Computation. IEEE, New York, pp 487–492Google Scholar
  60. 60.
    Lugowski MW (1989) Computational metabolism: Towards biological geometries for computing. In: Langton CG (ed) Artificial Life. Addison‐Wesley, Redwood City, pp 341–368. ISBN 0-201-09346-4Google Scholar
  61. 61.
    Matsumaru N, Speroni di Fenizio P, Centler F, Dittrich P (2006) On the evolution of chemical organizations. In: Artmann S, Dittrich P (eds) Proc of the 7th german workshop of artificial life. IOS Press, Amsterdam, pp 135–146Google Scholar
  62. 62.
    Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. Oxford University Press, New YorkGoogle Scholar
  63. 63.
    McCaskill JS (1988) Polymer chemistry on tape: A computational model for emergent genetics. Internal report. MPI for Biophysical Chemistry, GöttingenGoogle Scholar
  64. 64.
    McCaskill JS, Chorongiewski H, Mekelburg D, Tangen U, Gemm U (1994) Configurable computer hardware to simulate long-time self‐organization of biopolymers. Ber Bunsenges Phys Chem 98(9):1114–1114CrossRefGoogle Scholar
  65. 65.
    McMullin B, Varela FJ (1997) Rediscovering computational autopoiesis. In: Husbands P, Harvey I (eds) Fourth european conference on artificial life. MIT Press, Cambridge, pp 38–47Google Scholar
  66. 66.
    Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117(3046):528–9CrossRefGoogle Scholar
  67. 67.
    Morris HC (1989) Typogenetics: A logic for artificial life. In: Langton CG (ed) Artif life. Addison‐Wesley, Redwood City, pp 341–368Google Scholar
  68. 68.
    Ono N, Ikegami T (2000) Self‐maintenance and self‐reproduction in an abstract cell model. J Theor Biol 206(2):243–253CrossRefGoogle Scholar
  69. 69.
    Pargellis AN (1996) The spontaneous generation of digital “life”. Physica D 91(1–2):86–96zbMATHCrossRefGoogle Scholar
  70. 70.
    Pǎun G (2000) Computing with membranes. J Comput Syst Sci 61(1):108–143Google Scholar
  71. 71.
    Petri CA (1962) Kommunikation mit Automaten. Ph D thesis, University of BonnGoogle Scholar
  72. 72.
    Rasmussen S, Knudsen C, Feldberg R, Hindsholm M (1990) The coreworld: Emergence and evolution of cooperative structures in a computational chemistry. Physica D 42:111–134CrossRefGoogle Scholar
  73. 73.
    Rasmussen S, Knudsen C, Feldberg R (1992) Dynamics of programmable matter. In: Langton CG, Taylor C, Farmer JD, Rasmussen S (eds) Artificial life II. Addison‐Wesley, Redwood City, pp 211–291. ISBN 0-201-52570-4Google Scholar
  74. 74.
    Ray TS (1992) An approach to the synthesis of life. In: Langton CG, Taylor C, Farmer JD, Rasmussen S (eds) Artificial life II. Addison‐Wesley, Redwood City, pp 371–408Google Scholar
  75. 75.
    Rössler OE (1971) A system theoretic model for biogenesis. Z Naturforsch B 26(8):741–746Google Scholar
  76. 76.
    Sali A, Shakhnovich E, Karplus M (1994) How does a protein fold? Nature 369(6477):248–251CrossRefGoogle Scholar
  77. 77.
    Sali A, Shakhnovich E, Karplus M (1994) Kinetics of protein folding: A lattice model study of the requirements for folding to the native state. J Mol Biol 235(5):1614–1636CrossRefGoogle Scholar
  78. 78.
    Salzberg C (2007) A graph-based reflexive artificial chemistry. Biosystems 87(1):1–12CrossRefGoogle Scholar
  79. 79.
    Sayama H (2009) Swarm chemistry. Artif Life. (in press)Google Scholar
  80. 80.
    Sayama H (1998) Introduction of structural dissolution into Langton's self‐reproducing loop. In: Adami C, Belew R, Kitano H, Taylor C (eds) Artificial life VI. MIT Press, Cambridge, pp 114–122Google Scholar
  81. 81.
    Segre D, Ben-Eli D, Lancet D (2000) Compositional genomes: Prebiotic information transfer in mutually catalytic noncovalent assemblies. Proc Natl Acad Sci USA 97(8):4112–4117CrossRefGoogle Scholar
  82. 82.
    Socci ND, Onuchic JN (1995) Folding kinetics of proteinlike heteropolymers. J Chem Phys 101(2):1519–1528CrossRefGoogle Scholar
  83. 83.
    Speroni di Fenizio P (2000) A less abstract artficial chemistry. In: Bedau MA, McCaskill JS, Packard NH, Rasmussen S (eds) Artificial life VII. MIT Press, Cambridge, pp 49–53Google Scholar
  84. 84.
    Speroni Di Fenizio P, Dittrich P (2002) Artificial chemistry's global dynamics. Movement in the lattice of organisation. J Three Dimens Images 16(4):160–163. ISSN 1342-2189Google Scholar
  85. 85.
    Stadler PF, Fontana W, Miller JH (1993) Random catalytic reaction networks. Physica D 63:378–392MathSciNetzbMATHCrossRefGoogle Scholar
  86. 86.
    Suzuki H (2007) Mathematical folding of node chains in a molecular network. Biosystems 87(2–3):125–135. doi:10.1016/j.biosystems.2006.09.005CrossRefGoogle Scholar
  87. 87.
    Suzuki K, Ikegami T (2006) Spatial‐pattern‐induced evolution of a self‐replicating loop network. Artif Life 12(4):461–485. doi:10.1162/artl.2006.12.4.461CrossRefGoogle Scholar
  88. 88.
    Suzuki Y, Tanaka H (1997) Symbolic chemical system based on abstract rewriting and its behavior pattern. Artif Life Robotics 1:211–219CrossRefGoogle Scholar
  89. 89.
    Tangen U, Schulte L, McCaskill JS (1997) A parallel hardware evolvable computer polyp. In: Pocek KL, Arnold J (eds) IEEE symposium on FPGAs for custopm computing machines. IEEE Computer Society, Los AlamitosGoogle Scholar
  90. 90.
    Thürk M (1993) Ein Modell zur Selbstorganisation von Automatenalgorithmen zum Studium molekularer Evolution. Ph D thesis, Universität JenaGoogle Scholar
  91. 91.
    Turing AM (1952) The chemical basis of morphogenesis. Phil Trans R Soc London B 237:37–72CrossRefGoogle Scholar
  92. 92.
    Vanderzande C (1998) Lattice models of polymers. Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar
  93. 93.
    Varela FJ, Maturana HR, Uribe R (1974) Autopoiesis: The organization of living systems. BioSystems 5(4):187–196CrossRefGoogle Scholar
  94. 94.
    Varetto L (1993) Typogenetics: An artificial genetic system. J Theor Biol 160(2):185–205CrossRefGoogle Scholar
  95. 95.
    Varetto L (1998) Studying artificial life with a molecular automaton. J Theor Biol 193(2):257–285CrossRefGoogle Scholar
  96. 96.
    Vico G (1710) De antiquissima Italorum sapientia ex linguae originibus eruenda librir tres. NeapelGoogle Scholar
  97. 97.
    von Neumann J, Burks A (ed) (1966) The theory of self‐reproducing automata. University of Illinois Press, UrbanaGoogle Scholar
  98. 98.
    Zauner K-P, Conrad M (1996) Simulating the interplay of structure, kinetics, and dynamics in complex biochemical networks. In: Hofestädt R, Lengauer T, Löffler M, Schomburg D (eds) Computer science and biology GCB'96. University of Leipzig, Leipzig, pp 336–338Google Scholar
  99. 99.
    Zeleny M (1977) Self‐organization of living systems: A formal model of autopoiesis. Int J General Sci 4:13–28CrossRefGoogle Scholar

Books and Reviews

  1. 100.
    Adami C (1998) Introduction to artificial life. Springer, New YorkzbMATHCrossRefGoogle Scholar
  2. 101.
    Dittrich P, Ziegler J, Banzhaf W (2001) Artificial chemistries – a review. Artif Life 7(3):225–275CrossRefGoogle Scholar
  3. 102.
    Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Peter Dittrich
    • 1
  1. 1.Department of Mathematics and Computer ScienceFriedrich Schiller University JenaJenaGermany