Computational Complexity

2012 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Multivariate Splines and Their Applications

  • Ming-Jun Lai
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-1800-9_126

Article Outline

Glossary

Introduction

Definition of the Subject

Various Spline Spaces

The B-form Representation of Spline Functions

Dimension of Multivariate Spline Spaces

Approximation Power of Spline Spaces

Construction of Finite Elements and Macro-Elements

Multivariate Splines for Scattered Data Fitting

Multivariate Splines for Numerical Solution of Partial Differential Equations

Multivariate Box Spline Wavelets

Open Research Problems

Bibliography

Keywords

Weak Solution Spline Function Smoothness Condition Biharmonic Equation Polygonal Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

Primary Literature

  1. 1.
    Alfeld P (1984) A trivariate Clough–Tocher scheme for tetrahedraldata. Comput Aided Geom Des 1(1984):169–181MATHCrossRefGoogle Scholar
  2. 2.
    Alfeld P, Schumaker LL (2008) Bounds on the dimension of trivariate spline spaces. Advances in Comp Math to appearGoogle Scholar
  3. 3.
    Awanou G, Lai MJ (2005) On convergence rate of the augmented Lagrangian algorithm for nonsymmetric saddle point problems. Appl Numer Math 54(2):122–134MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Awanou G, Lai MJ (2005) Trivariate spline approximations of 3D Navier–Stokes equations.Math Comp 74:585–601MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Awanou G, Lai MJ, Wenston P (2006) The multivariate spline method for scattered data fitting and numerical solution of partial differential equations. In: Chen G, Lai M-J (eds) Wavelets and Splines: Athens 2005. Nashboro Press, Brentwood, pp 24–74Google Scholar
  6. 6.
    Baramidze V, Lai MJ, Shum CK (2006) Spherical Splines for Data Interpolation and Fitting. SIAM J Sci Comput 28:241–259MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    de Boor C (1978) A Practical Guide to Splines. Springer, BerlinMATHCrossRefGoogle Scholar
  8. 8.
    de Boor C (1987) B-form basics. In: Farin G (ed) Geometric Modeling: Algorithms and New Trends. SIAM Publication, Philadelphia, pp 131–148Google Scholar
  9. 9.
    de Boor C (1993) Multivariate piecewise polynomials. Acta Numerica 1:65–109CrossRefGoogle Scholar
  10. 10.
    de Boor C, Höllig K (1988) Approximation power of smooth bivariate pp functions.Math Z 197:343–363Google Scholar
  11. 11.
    de Boor C, Jia RQ (1993) A sharp upper bound on the approximation order of smooth bivariate pp functions. J Approx Theory 72:24–33MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    de Boor C, Höllig K, Riemenschneider SD (1993) Box Splines. Springer, BerlinGoogle Scholar
  13. 13.
    Brenner SC, Scott LR (1994) The mathematical theory of finite element methods. Springer, BerlinMATHCrossRefGoogle Scholar
  14. 14.
    Chui CK, Lai MJ (1990) Multivariate vertex splines and finite elements. J Approx Theory 60:245–343MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Chui CK, Lai MJ (1990) On bivariate super vertex splines. Constr Approx 6:399–419MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Ciarlet PG (1978) The Finite Element Method for Elliptic Problems. North Holland, AmsterdamMATHGoogle Scholar
  17. 17.
    Clough R, Tocher J (1965) Finite element stiffness matrices for analysis of plates in bending. In: Proc of Conference on Matrix Methods in Structural Analysis, Wright–Patterson Air Force BaseGoogle Scholar
  18. 18.
    Daubechies I (1992) Ten Lectures on Wavelets. SIAM Publications, PhiladelphiaMATHCrossRefGoogle Scholar
  19. 19.
    Daubechies I, Han B, Ron A, Shen ZW (2003) Framelets: MRA-based constructions of wavelet frames. Appl Comp Harmonic Anal 14:1–46MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Evans L (1998) Partial Differential Equations. American Math Soc, ProvidenceMATHGoogle Scholar
  21. 21.
    Farin G (1986) Triangular Bernstein–Bézier patches. Comput Aided Geom Design 3:83–127MathSciNetCrossRefGoogle Scholar
  22. 22.
    Girault V, Raviart PA (1986) Finite Element Method for Navier–Stokes Equations. Springer, BerlinCrossRefGoogle Scholar
  23. 23.
    Grisvard (1985) Elliptic Problems in Nonsmooth Domain. Pitman Publishing Co, BostonGoogle Scholar
  24. 24.
    He W, Lai MJ (1998) Bivariate Box Spline Wavelets in Sobolev Spaces. In: proceedings of SPIE, vol 3458. pp 56–66Google Scholar
  25. 25.
    He W, Lai MJ (1999) Construction of bivariate compactly supported biorthogonal box spline wavelets with arbitrarily high regularities. Appl Comput Harmon Anal 6:53–74MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    He W, Lai MJ (2003) Construction of trivariate compactly supported biorthogonal box wavelets. J Approx Theory 120:1–19MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Hong D (1991) Spaces of bivariate spline functions over triangulation. Approx Theory Appl 7:56–75MATHGoogle Scholar
  28. 28.
    Hu XL, Han D, Lai MJ (2007) Bivariate splines of various degrees for numerical solution of partial differential equations. SIAM J Sci Comput 29:1338–1354MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Lai MJ (1989) On construction of bivariate and trivariate vertex splines on mixed grid partitions, Ph D Dissertation. Texas A&M University, College Station, TexasGoogle Scholar
  30. 30.
    Lai MJ (1997) Geometric interpretation of smoothness conditions of triangular polynomial patches. Comput Aided Geom Des 14:191–199MATHCrossRefGoogle Scholar
  31. 31.
    Lai MJ (2006) Construction of multivariate compactly supported prewavelets in L 2 spaces and pre-Riesz basis in Sobolev spaces. J Approx Theory 142:83–115MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Lai MJ (2008) Multivariate splines for data fitting and approximation. In: Neamtu M, SChumaker LL (eds) Approximation XII, San Antonio, 2007, Nashboro press, Brentwood, pp 210–228Google Scholar
  33. 33.
    Lai MJ, Le Mehaute A (2004) A new kind of trivariate C 1 finite element. Adv Comput Math 21:273–292MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Lai MJ, Schumaker LL (1998) Approximation power of bivariate splines. Adv Comput Math 9:251–279MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Lai MJ, Schumaker LL (2007) A domain decomposition method for computing bivariate spline fits of scattered data (appear) SIAM J Nam AnalGoogle Scholar
  36. 36.
    Lai MJ, Schumaker LL (2007) Spline Functions on Triangulations. Cambridge University Press, Cambridge, UKMATHCrossRefGoogle Scholar
  37. 37.
    Lai MJ, Stoeckler J (2006) Construction of multivariate compactly supported tight wavelet frames. Appl Comput Harmon Anal 21:324–348MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Lai MJ, Wenston P (2000) Bivariate spline method for numerical solution of Navier–Stokes equations over polygons in stream function formulation. Numer Methods PDE 16:147–183MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Lai MJ, Wenston P (2001) Trivariate C 1 cubic splines for numerical solution of biharmonic equation. In: Kopotun K, Lyche T, Neamtu M (eds) Trends in Approximation Theory. Vanderbilt University Press, Nashville, pp 224–234Google Scholar
  40. 40.
    Lai MJ, Wenston P (2004) L 1 spline methods for scattered data interpolation and approximation. Adv Comp Math 21:293–315MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Lai MJ, Wenston P (2004) Bivariate splines for fluid flows. Comput Fluids 33:1047–1073MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Le Mehauté A (1984) Interpolation et approximation par des fonctions polynomiales the computed solutions from the domain decomposition method par morceaux dans \( { \mathbb{R}^n } \), Ph D Thesis.Univ Rennes, RennesGoogle Scholar
  43. 43.
    Powell MJD, Sabin MA (1977) Piecewise quadratic approximations on triangles. ACM Trans Math Softw 3:316–325MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Riemenschneider S, Shen ZW (1991) Box splines, cardinal series, and wavelets. In: Chui CK (ed) Approximation Theory and Functional Analysis. Academic Press, Boston, pp 133–149Google Scholar
  45. 45.
    Sander G (1964) Bornes supérieures et inférieures dans l’analyse matricielle des plaques en flexion‐torsion. Bull Soc R Sci Liège 33:456–494MathSciNetGoogle Scholar
  46. 46.
    Schumaker LL (1979) On the dimension of spaces of piecewise polynomials in two variables. In: Schempp W, Zeller K (eds) Multivariate Approximation Theory. Birkhäuser, Basel, pp 396–412Google Scholar
  47. 47.
    Schumaker LL (1981) Spline Functions: Basic Theory. Wiley, New YorkMATHGoogle Scholar
  48. 48.
    Schumaker LL (2008) Computing bivariate splines in scattered data fitting and the finite‐element method. Numer Algs 48(2008):237–260MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Schumaker LL, Sorokina T, Worsey A (2008) A C 1 quadratic trivariate macro‐element space defined over arbitrary tetrahedral partition. submitted 2008Google Scholar
  50. 50.
    Temam R (1984) Navier–Stokes Equations. Theory and Numerical Analysis. North-Holland Publishing Co, AmsterdamMATHGoogle Scholar
  51. 51.
    von Golitchek M, Schumaker LL (2002) Bounds on projections onto bivariate polynomial spline spaces with stable local bases. Constr Approx 18:241–254MathSciNetCrossRefGoogle Scholar
  52. 52.
    von Golitschek M, Schumaker LL (2002) Penalized least squares fitting. Serdica 18:1001–1020Google Scholar
  53. 53.
    von Golitschek M, Lai MJ, Schumaker LL (2002) Bounds for minimal energy bivariate polynomial splines. Numer Math 93:315–331MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    Worsey AJ, Farin G (1987) An n‑dimensional Clough–Tocher interpolant. Constr Approx 3:99–110MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    Worsey AJ, Piper B (1988) A trivariate Powell–Sabin interpolant. Comp Aided Geom Des 5:177–186MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    Ženiček A (1973) Polynomial approximation on tetrahedrons in the finite element method. J Approx Theory 7:34–351Google Scholar

Books and Reviews

  1. 57.
    Chui CK (1988) Multivariate Splines. CBMS Lectures, SIAM Publication, PhiladelphiaCrossRefGoogle Scholar
  2. 58.
    Dierckx P (1985) Curve and Surface Fitting with Splines. Oxford University Press, OxfordGoogle Scholar
  3. 59.
    Späth H (1995) Two Dimensional Spline Interpolation Algorithms. AK Peters, WellesleyGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ming-Jun Lai
    • 1
  1. 1.Department of MathematicsThe University of GeorgiaAthensUSA