Computational Complexity

2012 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Motifs inGraphs

  • Sergi Valverde
  • Ricard V. Solé
Reference work entry

Article Outline


Definition of the Subject


Levels of Network Complexity

Subgraph Census

Network Motifs

Dynamic Behavior of Network Motifs

Motifs as Fingerprints of Evolutionary Paths

Future Directions



Complex Network Degree Distribution Random Network Functional Trait Network Motif 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


Primary Literature

  1. 1.
    Albert R, Barabási AL (2002) Rev Mod Phys 74:47–97Google Scholar
  2. 2.
    Bornholdt S (2005) Less is more in modeling large genetic networks. Science 310:449–450CrossRefGoogle Scholar
  3. 3.
    Bornholdt S, Schuster G (eds) (2002) Handbook of Graphs and Networks. Wiley, BerlinGoogle Scholar
  4. 4.
    Davis JA, Leinhardt S (1968) The structure of positive interpersonal relations in small groups. Annual Meeting of the American Sociological Association, BostonGoogle Scholar
  5. 5.
    Dorogovtsev SN, Mendes JFF (2003) Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press, New YorkzbMATHGoogle Scholar
  6. 6.
    Gould SJ, Lewontin RC (1979) The Spandrels of San Marco and the Panglossian Paradigm: A Critique of the Adaptationist Programme. Proc Roy Soc London B 205:581–598CrossRefGoogle Scholar
  7. 7.
    Holland PW, Leinhardt S (1970) A method for detecting structure in sociometric data. Am J Soc 70:492–513CrossRefGoogle Scholar
  8. 8.
    Itzkovitz S, Alon U (2005) Subgraphs and Network Motifs in Geometric Networks. Phys Rev E 71:026117CrossRefGoogle Scholar
  9. 9.
    Itzkovitz S, Milo R, Kashtan N, Ziv G, Alon U (2003) Subgraphs in random networks. Phys Rev E 68:026127MathSciNetCrossRefGoogle Scholar
  10. 10.
    JacobF (1977) Evolution as tinkering. Science 196:1161–1166CrossRefGoogle Scholar
  11. 11.
    Kashtan N, Itzkovitz S, Milo R, Alon U (2004) Efficient Sampling Algorithm for Estimating Subgraph Concentrations and Detecting Network Motifs. Bioinformatics 20(11):1746–1758CrossRefGoogle Scholar
  12. 12.
    Mazurie A, Bottani S, Vergassola M (2005) An evolutionary and functional assessment of regulatory network motifs. Genome Biol 6:R35CrossRefGoogle Scholar
  13. 13.
    Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network Motifs: Simple Building Blocks of Complex Networks. Science 298:824–827CrossRefGoogle Scholar
  14. 14.
    Milo R, Itzkovitz S, Kashtan N, Levitt R, Shen-Orr S, Ayzenshtat I, Sheffer M, Alon U (2004) Superfamilies of designed and evolved networks. Science 303:1538–1542CrossRefGoogle Scholar
  15. 15.
    Mangan S, Alon U (2003) Structure and function of the feed‐forward loop network motif. Proc Nat Acad Sci 100(21):11980–11985CrossRefGoogle Scholar
  16. 16.
    Mangan S, Zaslaver A, Alon U (2003) The coherent feedforward loop serves as a sign‐sensitive delay element in transcription networks. J Mol Biol 334:197–204CrossRefGoogle Scholar
  17. 17.
    McKay BD (1981) Practical Graph Isomorphism. Congressus Numerantium 30:45–87MathSciNetGoogle Scholar
  18. 18.
    Moreno‐Vega Y, Vázquez‐Prada M, Pacheco A (2004) Fitness for synchronization of network motifs. Phys A 343:279–287Google Scholar
  19. 19.
    Newman MEJ (2003) SIAM Rev 45:167–256MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Onnela J-K, Saramaki J, Kertész J, Kaski K (2005) Intensity and coherence of motifs in weighted complex networks. Phys Rev E 71:065103(R)Google Scholar
  21. 21.
    Ravasz E, Somera SL, Mongru DA, Oltvai ZN, Barabási A-L (2002) Hierarchical organization of modularity in metabolic networks.Science 297:1551–1555Google Scholar
  22. 22.
    Rodriguez‐Caso C, Medina MA, Solé RV (2005) Topology, tinkering and evolution of the human transcription factor network. FEBS J 272:6423–6434Google Scholar
  23. 23.
    Shen-Orr S, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulatory network of Escherichia coli.Nat Genet 31:64–68CrossRefGoogle Scholar
  24. 24.
    Sporns O, Kotter R (2004) Motifs in Brain Networks. PLoS Biol 2(11):e369CrossRefGoogle Scholar
  25. 25.
    Solé RV, Ferrer I, Cancho R, Montoya JM, Valverde S (2002) Selection, Tinkering, and Emergence in Complex Networks. Complexity 8:20–33Google Scholar
  26. 26.
    Solé RV, Valverde S (2006) Are Network Motifs The Spandrels of Cellular Complexity? Trends Ecol Evol 21:419–22Google Scholar
  27. 27.
    Tononi G, Sporns O, Edelman GM (1999) Measures of degeneracy and redundancy in biological networks. Proc Natl Acad Sci USA 96:3257–3262CrossRefGoogle Scholar
  28. 28.
    Valverde S, Solé RV (2005) Network Motifs in Computational Graphs: A Case Study in Software Architecture. Phys Rev E 72(2):026107Google Scholar
  29. 29.
    Vázquez A, Dobrin R, Sergi D, Eckmann JP, Oltvai ZN, Barabási A-L (2004) The topological relationship between the large-scale attributes and local interaction patterns of complex networks. Proc Nat Acad Sci 1001:17940–17945Google Scholar
  30. 30.
    VázquezA, Flammini A, Maritan A, Vespignani A (2003) Modeling of ProteinInteraction Networks. Complexus 1:38–44Google Scholar
  31. 31.
    Wagner G, Pavlicev M, Cheverud JM (2007) The road to modularity. Nat Rev Genet 8:921–931CrossRefGoogle Scholar
  32. 32.
    Wasserman S, K Faust (1994) Social Network Analysis. Cambridge University Press, CambridgeGoogle Scholar
  33. 33.
    Wernicke S (2006) Efficient Detection of Network Motifs.IEEE/ACM Trans Comp Biol Bioinf 3(4):347–359CrossRefGoogle Scholar
  34. 34.
    Wolf DM, Arkin AP (2003) Motifs, modules and games in bacteria. Curr Opin Microbiol 6(2):125–134CrossRefGoogle Scholar
  35. 35.
    Ziv E, Koytcheff R, Middendorf M, Wiggins C (2005) Systematic identification of statistically significant network measures. Phys Rev E 71:016110CrossRefGoogle Scholar

Books and Reviews

  1. 36.
    Banzhaf W, Kuo PD (2004) Network motifs in natural and artificial transcriptional regulatory networks. J Biol Phys Chem 4(2):85–92CrossRefGoogle Scholar
  2. 37.
    Dobrin R, Beg Q, Barabási A-L, Oltvai Z (2004) Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network. BMC Bioinform 5:10Google Scholar
  3. 38.
    Gould SJ (2002) The Structure of Evolutionary Theory. Harvard University Press, CambridgeGoogle Scholar
  4. 39.
    Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47–C52CrossRefGoogle Scholar
  5. 40.
    Kuo PD, Banzhaf W, Leier A (2006) Network topology and the evolution of dynamics in an artificial regulatory network model created by whole genome duplication and divergence. Biosystems 85:177–200CrossRefGoogle Scholar
  6. 41.
    Solé RV, Pastor‐Satorras R, Smith E, Kepler TS (2002) A model of large-scale proteome evolution. Adv Complex Syst 5:43–54Google Scholar
  7. 42.
    Zhang LV et al (2005) Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network. J Biol 4(2):6CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Sergi Valverde
    • 1
  • Ricard V. Solé
    • 2
  1. 1.Complex Systems LabParc de Recerca Biomedica de BarcelonaBarcelonaSpain
  2. 2.Santa Fe InstituteSanta FeUSA