Computational Complexity

2012 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Logic and Geometry of Agents in Agent-Based Modeling

  • Samson Abramsky
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-1800-9_113

Article Outline

Glossary

Definition of the Subject

Introduction

Towards a Logic and Geometry of Interaction

Further Directions

Bibliography

Keywords

Arena Kelly 
This is a preview of subscription content, log in to check access

Bibliography

Primary Literature

  1. 1.
    Abramsky S (1996) Retracing some paths in process algebra. In: Proc of CONCUR 96. Lectures notes in computer science, vol 1119. Springer, Berlin, pp 1–17Google Scholar
  2. 2.
    Abramsky S (2002) Algorithmic game semantics: a tutorial introduction. In: Proof and system‐reliability. Kluwer, DordrechtGoogle Scholar
  3. 3.
    Abramsky S (2004) High‐level methods for quantum computation and information. In: Proc of the 19th annual IEEE symposium on logic in computer science. IEEE Computer Science Press, Los Alamitos pp 410–414Google Scholar
  4. 4.
    Abramsky S (2005) Abstract scalars, loops, and free traced and strongly compact closed categories. In: Proc of CALCO 2005. Springer lecture notes in computer science, vol 3629. Springer, Berlin, pp 1–31Google Scholar
  5. 5.
    Abramsky S (2007) Temperley–Lieb algebras and geometry of interaction. In: Chen G, Kauffman L, Lamonaco S (eds) Mathematics of quantum computing and technology. Chapman and Hall/CRC, Boca Raton, pp 413–458Google Scholar
  6. 6.
    Abramsky S, Coecke B (2004) A categorical semantics of quantum protocols. In: Proc of the 19th Annual IEEE symposium on logic in computer science: LICS 2004. IEEE Computer Society, Los Alamitos, pp 415–425CrossRefGoogle Scholar
  7. 7.
    Abramsky S, Coecke B (2005) Abstract physical traces. Theory Appl Categ 14:111–124MathSciNetMATHGoogle Scholar
  8. 8.
    Abramsky S, Jagadeesan R (1994) New foundations for the geometry of interaction. Inform Comput 111:53–119MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Abramsky S, Jagadeesan R (1994) Games and full completeness for multiplicative linear logic. J Symb Log 59:543–574MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Abramsky S, Jagadeesan R (2005) A game semantics for generic polymorphism. Ann Pure Appl Log 133:3–37MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Abramsky S, McCusker G (1997) Linearity, sharing and state. In: O'Hearn P, Tennent RD (eds) Algol‐like languages. Birkhauser, Basel, pp 317–348Google Scholar
  12. 12.
    Abramsky S, McCusker G (1999) Full abstraction for idealized Algol with passive expressions. Theor Comput Sci 227:3–42MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Abramsky S, McCusker G (1999) Game semantics. In: Computational logic: Proc of the 1997 Marktoberdorf Summer School. Springer, Berlin, pp 1–56Google Scholar
  14. 14.
    Abramsky S, Mellies P-A (1999) Concurrent games and full completeness. In: Proc of the 14th international symposium on logic in computer science. Computer Society Press of the IEEE, Los Alamitos, pp 431–442Google Scholar
  15. 15.
    Abramsky S, Honda K, McCusker G (1998) A fully abstract game semantics for general references. In: Proc of the 13th international symposium on logic in computer science. Computer Society Press of the IEEE, Los Alamitos, pp 334–344Google Scholar
  16. 16.
    Abramsky S, Jagadeesan R, Malacaria P (2000) Full abstraction for PCF. Inform Comput 163:409–470MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Abramsky S, Ghica DR, Murawski AS, Ong C-HL (2004) Applying game semantics to compositional software modeling and verification. In: Proc TACAS'04. LNCS, vol 2988. pp 421–435Google Scholar
  18. 18.
    Abramsky S, Ghica DR, Murawski AS, Stark IDB, Ong C-HL (2004) Nominal games and full abstraction for the nu‐calculus. In: Proc LICS'04. IEEE Computer Society Press, Los Alamitos, pp 150–159Google Scholar
  19. 19.
    Blute R, Scott PJ (1998) The Shuffle Hopf Algebra and noncommutative full completeness. J Symb Log 63(4):1413–1436MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Blute R, Hamano M, Scott PJ (2005) Softness of hypercoherences and MALL full completeness. Ann Pure Appl Log 131(1–3):1–63MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Danos V, Harmer R (2002) Probabilistic game semantics. ACM Trans Comput Log 3(3):359–382MathSciNetCrossRefGoogle Scholar
  22. 22.
    Devarajan H, Hughes D, Plotkin G, Pratt V (1999) Full completeness of the multiplicative linear logic of Chu spaces. In: Proc of the 14th Annual IEEE symposium on logic in computer science. pp 234–242Google Scholar
  23. 23.
    Dirac PAM (1947) Principles of quantum mechanics. Oxford University Press, OxfordMATHGoogle Scholar
  24. 24.
    Ghica DR, McCusker G (2000) Reasoning about idealized algol using regular languages. In: Proc ICALP'00. LNCS, vol 1853. pp 103–116Google Scholar
  25. 25.
    Ghica DR, Murawski AS (2004) Angelic semantics of fine‐grained concurrency. In: Proc FOSSACS'04. LNCS, vol 2987. pp 211–225Google Scholar
  26. 26.
    Ghica DR, Murawski AS (2006) Compositional model extraction for higher‐order concurrent programs. In: Proc TACAS'06. LNCSGoogle Scholar
  27. 27.
    Girard J-Y (1987) Linear logic. Theor Comput Sci 50(1):1–102MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Girard J-Y (1989) Geometry of interaction I: interpretation of system F. In: Ferro R et al (eds) Logic Colloquium ‘88. Elsevier, Amsterdam, pp 221–260Google Scholar
  29. 29.
    Harmer R, McCusker G (1999) A fully abstract game semantics for finite nondeterminism. In: Proc 14th Annual IEEE symposium on logic in computer science. IEEE Computer Society Press, Los AlamitosGoogle Scholar
  30. 30.
    Hughes D (2000) Hypergame semantics: full completeness for system F. D Phil Mathematical Sciences. Oxford University, OxfordGoogle Scholar
  31. 31.
    Hyland JME, Ong C-HL (2000) On full abstraction for PCF: i. models, observables and the full abstraction problem, ii. dialogue games and innocent strategies, iii. a fully abstract and universal game model. Informat Comput 163:285–408MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Jones VFR (1985) A polynomial invariant for links via von Neumann algebras. Bull Amer Math Soc 129:103–112CrossRefGoogle Scholar
  33. 33.
    Kauffman LH (1990) An invariant of regular isotopy. Trans Amer Math Soc 318(2):417–471MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Kelly GM, Laplaza ML (1980) Coherence for compact closed categories. J Pure Appl Algebra 19:193–213MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Laird J (1997) Full abstraction for functional languages with control. In: Proc of the 12th Annual symposium on logic in computer science, LICS '97. Extended abstractGoogle Scholar
  36. 36.
    Laird J (2001) A fully abstract games semantics of local exceptions. In: Proc of the 16th Annual symposium on logic in computer science, LICS ’01. Extended abstractGoogle Scholar
  37. 37.
    Loader R (1994) Models of Lambda calculi and linear logic. D Phil thesis. Oxford University, OxfordGoogle Scholar
  38. 38.
    Murawski AS, Ong C-HL, Walukiewicz I (2005) Idealized Algol with ground recursion and DPDA equivalence. In: Proc ICALP'05. LNCS, vol 3580. pp 917–929Google Scholar

Books and Reviews

  1. 39.
    Girard J-Y, Lafont Y, Taylor P (1989) Proof and types. Cambridge Tracts in Theoretical Computer ScienceGoogle Scholar
  2. 40.
    Hindley JR, Seldin JP (1986) Introduction to combinators and the λ‑calculus. Cambridge University Press, CambridgeGoogle Scholar
  3. 41.
    Kauffman LH (1994) Knots in physics. World Scientific Press, SingaporeGoogle Scholar
  4. 42.
    Troelstra AS (1992) Lectures on linear logic. Center for the Study of Language and Information Lecture Notes No. 29Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Samson Abramsky
    • 1
  1. 1.Oxford University Computing LaboratoryOxfordUK