Computational Complexity

2012 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Additive Cellular Automata

  • Burton Voorhees
Reference work entry

Article Outline


Definition of the Subject


Notation and Formal Definitions

Additive Cellular Automata in One Dimension

d-Dimensional Rules

Future Directions



Cellular Automaton Cycle Period Additive Rule Circulant Matrix State Transition Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


Primary Literature

  1. 1.
    von Neumann J (1963) The general and logical theory of automata. In: Taub A (ed) J. von Neumann Collected Works, vol 5. Pergamon, NY, pp 288–328Google Scholar
  2. 2.
    von Neumann J, Burk AW (ed) (1966) Theory of Self-Reproducing Automata. University of Illinois Press, UrbanaGoogle Scholar
  3. 3.
    Arbib M (1966) Simple self-reproducing universal automata. Inf Control 9:177–189zbMATHGoogle Scholar
  4. 4.
    Toffoli T, Margolis N (1987) Cellular Automata Machines: A New Environment for Modeling. MIT Press, CambridgeGoogle Scholar
  5. 5.
    Codd EF (1968) Cellular Automata. Academic Press, NYzbMATHGoogle Scholar
  6. 6.
    Duff MJB, Preston K, Jr. (1984) Modern Cellular Automata: Theory and Applications. Plenum, NYzbMATHGoogle Scholar
  7. 7.
    Sarkar P (2000) A brief history of cellular automata. ACM Comput Syst 32(1):80–107Google Scholar
  8. 8.
    Chopard B, Droz M (1998) Cellular Automata Modelling of Physical Systems. Cambridge University Press, CambridgeGoogle Scholar
  9. 9.
    Lindenmayer A, Rozenberg G (1976) Automata, Languages, Development. North Holland, AmsterdamzbMATHGoogle Scholar
  10. 10.
    Mackay AL (1976) Crystal Symmetry. Phys Bull 27:495–497Google Scholar
  11. 11.
    Langer JS (1980) Instabilities and pattern formation in crystal growth. Rev Mod Phys 52:1Google Scholar
  12. 12.
    Lin F, Goldenfeld N (1990) Generic features of late-stage crystal growth. Phys Rev A 42:895–903Google Scholar
  13. 13.
    Greenberg JM, Hastings SP (1978) Spatial patterns for discrete models of diffusion in excitable media. SIAM J Appl Math 34(3):515–523MathSciNetzbMATHGoogle Scholar
  14. 14.
    Greenberg JM, Hassard BD, Hastings SP (1978) Pattern formation and periodic structures in systems modeled by reaction-diffusion equations. Bull Am Math Soc 84:1296–1327MathSciNetzbMATHGoogle Scholar
  15. 15.
    Madore BF, Freedman WL (1983) Computer simulations of the Belousov-Zhabotinsky reaction. Science 222:615–616Google Scholar
  16. 16.
    Adamatzky A, Costello BDL, Asai T (2005) Reaction-Diffusion Computers. Elsevier, LondonGoogle Scholar
  17. 17.
    Oono Y, Kohmoto M (1985) A discrete model for chemical turbulance. Phys Rev Lett 55:2927–2931MathSciNetGoogle Scholar
  18. 18.
    Falk H (1986) Comments on a simple cellular automata in spin representation. Physica D 20:447–449MathSciNetzbMATHGoogle Scholar
  19. 19.
    Canning A, Droz M (1991) A comparison of spin exchange and cellular automata models for diffusion-controlled reactions. In: Gutowitz HA (ed) Cellular Automata: Theory and Experiment. MIT Press, Cambridge, pp 285–292Google Scholar
  20. 20.
    Vitanni P (1973) Sexually reproducing cellular automata. Math Biosci 18:23–54MathSciNetGoogle Scholar
  21. 21.
    Young D (1984) A local activator-inhibitor model of vertebrate skin patterns. Math Biosci 72:51–58MathSciNetGoogle Scholar
  22. 22.
    Dutching W, Vogelsaenger T (1985) Recent progress in modeling and simulation of three dimensional tumor growth and treatment. Biosystems 18(1):79–104Google Scholar
  23. 23.
    Moreira J, Deutsch A (2002) Cellular automata models of tumor development: A critical review. Adv Complex Syst 5(2&3):247–269MathSciNetzbMATHGoogle Scholar
  24. 24.
    Sieburg HB, McCutchan JA, Clay OK, Cabalerro L, Ostlund JJ (1991) Simulation on HIV infection in artificial immune systems. In: Gutowitz HA (ed) Cellular Automata: Theory and Experiment. MIT Press, Cambridge, pp 208–227Google Scholar
  25. 25.
    Santos RMZD, Continho S (2001) Dynamics of HIAV approach: A cellular automata approach.Phys Rev Lett 87(16):102–104Google Scholar
  26. 26.
    Beauchemin C, Samuel J, Tuszynski J (2005) A simple cellular automaton model for influenza A viral infection. J Theor Biol 232(2):223–234MathSciNetGoogle Scholar
  27. 27.
    Burks C, Farmer D (1984) Towards modeling DNA sequences as automata. Physica D 10:157–167MathSciNetGoogle Scholar
  28. 28.
    Moore JH, Hahn LW (2002) Cellular automata and genetic algorithms for parallel problem solving in human genetics. In: Merelo JJ, Panagiotis A, Beyer H-G (eds) Lecture Notes in Computer Science. Springer, Berlin, pp 821–830Google Scholar
  29. 29.
    Gerola H, Seiden P (1978) Stochastic star formation and spiral structure of galaxies.Astrophys J 223:129–135Google Scholar
  30. 30.
    Flache A, Hegselmann R (1998) Understanding complex social dynamics: A plead for cellular automata based modeling. J Artif Soc Social Simul 1(3):1Google Scholar
  31. 31.
    Chen K, Bak P, Jensen MH (1990) A deterministic critical forest-fire model. Phys Lett A 149:207–210MathSciNetGoogle Scholar
  32. 32.
    Drossel B, Schwabl F (1992) Self-organized critical forest-fire model. Phys Rev Lett 69:1629–1632Google Scholar
  33. 33.
    Smith III AR (1972) Real-time language recognition by one‐dimensional cellular automata.J Comput Syst Sci 6:233–253zbMATHGoogle Scholar
  34. 34.
    Sommerhalder R, van Westrhenen SC (1983) Parallel language recognition in constant time by cellular automata. Acta Inform 19:397–407MathSciNetzbMATHGoogle Scholar
  35. 35.
    Ibarra OH, Palis MA, Kim SM (1985) Fast parallel language recognition by cellular automata. Theor Comput Sci 41:231–246MathSciNetzbMATHGoogle Scholar
  36. 36.
    Morita K, Ueno S (1994) Parallel generation and parsing of array languages using reversible cellular automata. Int J Pattern Recognit Artif Intell 8:543–561Google Scholar
  37. 37.
    Jen E (1986) Invariant strings and pattern recognizing properties of 1D CA. J Stat Phys 43:243–265MathSciNetGoogle Scholar
  38. 38.
    Raghavan R (1993) Cellular automata in pattern recognition. Inf Sci 70:145–177Google Scholar
  39. 39.
    Chattopadhyay S, Adhikari S, Sengupta S, Pal M (2000) Highly regular, modular, and cascadable design of cellular automata-based pattern classifier. IEEE Trans VLSI Syst 8(6):724–735Google Scholar
  40. 40.
    Rosenfeld A (1979) Picture Languages. Academic Press, NYzbMATHGoogle Scholar
  41. 41.
    Sternberg SR (1980) Language and architecture for parallel image processing. In: Gelesma ES, Kanal LN (eds) Pattern Recognition in Practice. North-Holland, Amsterdam, p 35Google Scholar
  42. 42.
    Hopcroft JE, Ullman JD (1972) Introduction to Automata Theory, Language, and Computation. Addison-Wesley, ReadingGoogle Scholar
  43. 43.
    Cole SN (1969) Real time computation by n-dimensional iterative arrays of finite state machines. IEEE Trans Comput C-18:349Google Scholar
  44. 44.
    Benjamin SC, Johnson NF (1997) A possible nanometer-scale computing device based on an additive cellular automata. Appl Phys Lett 70(17):2321–2323Google Scholar
  45. 45.
    Carter F (1984) The molecular device computer: point of departure for large scale cellular automata. Physica D 10:175–194MathSciNetGoogle Scholar
  46. 46.
    Hillis WD (1984) The connection machine: A computer architecture based on cellular automata.Physica D 10:213–228Google Scholar
  47. 47.
    Manning FB (1977) An approach to highly integrated computer-maintained cellular arrays.IEEE Trans Comput C-26:536Google Scholar
  48. 48.
    Atrubin AJ (1965) A one‐dimensional real time iterative multiplier.IEEE Trans Comput EC-14:394Google Scholar
  49. 49.
    Nishio H (1981) Real time sorting of binary numbers by a 1-dimensional cellular automata.Kyoto University Technical ReportGoogle Scholar
  50. 50.
    Fischer PC (1965) Generation of primes by a one‐dimensional real time iterative array.J Assoc Comput Machin 12:388zbMATHGoogle Scholar
  51. 51.
    Pries W, Thanailakis A, Card HC (1986) Group properties of cellular automata and VLSI applications. IEEE Trans Comput C-35:1013–1024Google Scholar
  52. 52.
    Chaudhuri PP, Chowdhury DR, Nandi S, Chattopadhyay S (1997) Additive Cellular Automata: Theory and Applications, vol 1. IEEE Computer Society Press, Los AlamitoszbMATHGoogle Scholar
  53. 53.
    Bardell PH, McAnney WH (1986) Pseudo-random arrays for built-in tests. IEEE Trans Comput C-35(7):653–658Google Scholar
  54. 54.
    Hortensius PD, McLeod RD, Card HC (1989) Parallel random number generation for VLSI systems using cellular automata. IEEE Trans Comput 38(10):1466–1473Google Scholar
  55. 55.
    Tsalides P, York TA, Thanailakis A (1991) Pseudorandom number generation for VLSI systems using cellular automata. IEEE Proc E: Comput Digit Technol 138:241–249Google Scholar
  56. 56.
    Matsumoto M (1998) Simple cellular automata as pseudorandom m-sequence generators for built-in self-test. ACM Trans Modeling Comput Simul (TOMACS) 8(1):31–42zbMATHGoogle Scholar
  57. 57.
    Tomassini M, Sipper M, Perrenoud M (2000) On the generation of high-quality random numbers by two-dimensional cellular automata. IEEE Trans Comput 49(10):1146–1151Google Scholar
  58. 58.
    Das AK, Chaudhuri PP (1989) An efficient on-chip deterministic test pattern generation scheme. Euromicro J, Microprocess, Microprogramm 26:195–204Google Scholar
  59. 59.
    Serra M (1990) Algebraic analysis and algorithms for linear cellular automata over GF(2) and their applications to digital circuit testing. Congressus Numerantium 75:127–139MathSciNetGoogle Scholar
  60. 60.
    Das AK, Chaudhuri PP (1993) Vector space theoretical analysis of additive cellular automata and its applications for pseudo-exhaustive test pattern generation. IEEE Trans Comput 42:340–352MathSciNetGoogle Scholar
  61. 61.
    Tziones P, Tsalides P, Thanailakis A (1994) A new cellular automaton-based nearest neighbor pattern classifier and its VLSI implementation. IEEE Trans VLSI Implement 2(3):343–353Google Scholar
  62. 62.
    Mrugalski G, Rajski J, Tyszer J (2000) Cellular automata-based test pattern generators with phase shifters. IEEE Trans Comput-Aided Des 19(8):878–893Google Scholar
  63. 63.
    Sikdar BK, Ganguly N, Chaudhuri PP (2002) Design of hierarchical cellular automata for on-chip test pattern generator.IEEE Trans Comput Assist Des 21(12):1530–1539Google Scholar
  64. 64.
    Hortensius PD, McLeod RD, Card HC (1990) Cellular automata based signature analysis for built-in self-test. IEEE Trans Comput C-39:1273–1283Google Scholar
  65. 65.
    Serra M, Slater T, Muzio JC, Miller DM (1990) Analysis of one dimensional cellular automata and their aliasing probabilities.IEEE Trans Comput-Aided Des 9:767–778Google Scholar
  66. 66.
    Dasgupta P, Chattopadhyay S, Sengupta I (2001) Theory and application of nongroup cellular automata for message authentification.J Syst Architecture 47(7):383–404Google Scholar
  67. 67.
    Chowdhury DR, Basu S, Gupta IS, Chaudhuri PP (1994) Design of CAECC cellular automata based error correcting code. IEEE Trans Comput 43:759–764MathSciNetzbMATHGoogle Scholar
  68. 68.
    Chowdhury DR, Gupta IS, Chaudhuri PP (1995) Cellular automata based byte error correcting code. IEEE Trans Comput 44:371–382zbMATHGoogle Scholar
  69. 69.
    Chowdhury DR, Gupta IS, Chaudhuri PP (1995) A low-cost high-capacity associative memory design using cellular automata. IEEE Trans Comput 44:1260–1264zbMATHGoogle Scholar
  70. 70.
    Nandi S, Kar BK, Chaudhuri PP (1994) Theory and application of cellular automata in cryptography. IEEE Trans Comput 43(12):1346–1357MathSciNetGoogle Scholar
  71. 71.
    Cattell K, Muzio JC (1996) Synthesis of one‐dimensional linear hybrid cellular automata.IEEE Trans Comput-Aided Des 15:325–335Google Scholar
  72. 72.
    Cattell K, Zhang S, Serra M, Zmuzio JC (1999) 2-by-n hybrid cellular automata with regular configuration: Theory and applications.IEEE Trans Comput 48(3):285–295MathSciNetGoogle Scholar
  73. 73.
    Hedlund GA (1969) Endomorphisms and automorphisms of the shift dynamical system. Math Syst Theory 4:320–375MathSciNetGoogle Scholar
  74. 74.
    Wolfram S (1983) Statistical mechanics of cellular automata.Rev Mod Phys 55:601–644MathSciNetzbMATHGoogle Scholar
  75. 75.
    Gardner M (1970) The fantastic combinations of John Conway's new solitaire game ‘life’.Sci Am 223:120–123Google Scholar
  76. 76.
    Gardner M (1971) On cellular automata self-reproduction, the Garden of Eden and the game of ‘life’. Sci Am 224:112–117Google Scholar
  77. 77.
    Jen E (1988) Cylindrical cellular automata. Commun Math Phys 118:569–590MathSciNetzbMATHGoogle Scholar
  78. 78.
    Tadaki S, Matsufuji S (1993) Periodicity in one‐dimensional finite linear cellular automata. Prog Theor Phys 89(2):325–331Google Scholar
  79. 79.
    Nandi S, Pal Chaudhuri P (1996) Analysis of periodic and intermediate boundary 90/150 cellular automata. IEEE Trans Comput 45(1):1–12MathSciNetzbMATHGoogle Scholar
  80. 80.
    Chin W, Cortzen B, Goldman J (2001) Linear cellular automata with boundary conditions.Linear Algebra Appl 322:193–206MathSciNetzbMATHGoogle Scholar
  81. 81.
    Voorhees BH (1996) Computational Analysis of One Dimensional Cellular Automata. World Scientific, SingaporezbMATHGoogle Scholar
  82. 82.
    Willson S (1984) Cellular automata can generate fractals. Discret Appl Math 8:91–99MathSciNetzbMATHGoogle Scholar
  83. 83.
    Willson S (1984) Growth rates and fractional dimension in cellular automata. Physica D 10:69–74MathSciNetGoogle Scholar
  84. 84.
    Peitgen H-O, Richter PH (1986) The Beauty of Fractals: Images of Complex Dynamical Systems. Springer, NYzbMATHGoogle Scholar
  85. 85.
    Willson S (1987) The equality of fractional dimension for certain cellular automata.Physica D 24:179–189MathSciNetzbMATHGoogle Scholar
  86. 86.
    Willson S (1987) Computing fractional dimension of additive cellular automata. Physica D 24:190–206MathSciNetzbMATHGoogle Scholar
  87. 87.
    Culik II K, Dube S (1989) Fractals and recurrent behavior of cellular automata.Complex Syst 3:253–267MathSciNetzbMATHGoogle Scholar
  88. 88.
    Willson S (1992) Calculating growth rates and moments for additive cellular automata.Discret Appl Math 35:47–65MathSciNetzbMATHGoogle Scholar
  89. 89.
    Voorhees B (1988) Cellular automata, Pascal's triangle, and generation of order. Physica D 31:135–140MathSciNetzbMATHGoogle Scholar
  90. 90.
    von Haeseler F, Peitgen H-O, Skordev G (1992) Pascal's triangle, dynamical systems and attractors. Ergod Theory Dyn Syst 12:479–486zbMATHGoogle Scholar
  91. 91.
    Allouche JP, von Haeseler F, Peitgen H-O, Skordev G (1996) Linear cellular automata, finite automata and Pascal's triangle. Discret Appl Math 66:1–22zbMATHGoogle Scholar
  92. 92.
    von Haeseler F, Peitgen H-O, Skordev G (1992) Linear cellular automata, substitutions, hierarchical iterated function systems. In: Encarnacao JL, Peitgen H-O, Sakas G, Englert G (eds) Fractal Geometry and Computer Graphics. Springer, NYGoogle Scholar
  93. 93.
    von Haeseler F, Peitgen H-O, Skordev G (1993) Cellular automata, matrix substitution, and fractals. Ann Math Artif Intell 8(3,4):345–362zbMATHGoogle Scholar
  94. 94.
    von Haeseler F, Peitgen H-O, Skordev G (1995) Global analysis of self-similar features of cellular automata: selected examples. Physica D 86:64–80MathSciNetzbMATHGoogle Scholar
  95. 95.
    Barbé A, von Haeseler F, Peitgen H-O, Skordev G (1995) Course-graining invariant patterns of one‐dimensional two-state linear cellular automata. Int J Bifurc Chaos 5:1611–1631Google Scholar
  96. 96.
    von Haeseler F, Peitgen H-O, Skordev G (2001) Self-similar structures of rescaled evolution sets of cellular automata I. Int J Bifurc Chaos 11(4):913–926zbMATHGoogle Scholar
  97. 97.
    Nagler J, Claussen JC (2005) 1/f\( { ^{\alpha } } \) spectra in elementary cellular automata and fractal signals. Phys Rev E 71:067103Google Scholar
  98. 98.
    von Haeseler F, Peitgen H-O, Skordev G (2001) Self-similar structures of rescaled evolution sets of cellular automata II. Int J Bifurc Chaos 11(4):927–941zbMATHGoogle Scholar
  99. 99.
    Barbé A, von Haeseler F, Peitgen H-O, Skordev G (2003) Rescaled evolution sets of linear cellular automata on a cylinder.Int J Bifurc Chaos 13(4):815–842Google Scholar
  100. 100.
    Takahashi S (1990) Cellular automata and multifractals: Dimension spectra of linear cellular automata. Physica D 45:36–48Google Scholar
  101. 101.
    Takahashi S (1992) Self-similarity of linear cellular automata.J Comput Syst Sci 44(1):114–140zbMATHGoogle Scholar
  102. 102.
    Martin O, Odlyzko A, Wolfram S (1984) Algebraic properties of cellular automata.Commun Math Phys 93:219–258MathSciNetzbMATHGoogle Scholar
  103. 103.
    Jen E (1986) Global properties of cellular automata. J Stat Phys 43(1/2):219–242MathSciNetzbMATHGoogle Scholar
  104. 104.
    Jen E (1988) Linear cellular automata and recurring sequences in finite fields. Commun Math Phys 119:13–28MathSciNetGoogle Scholar
  105. 105.
    Guan P, He Y (1986) Exact results for deterministic cellular automata with additive rules. J Stat Phys 43(3/4):463–478MathSciNetzbMATHGoogle Scholar
  106. 106.
    Das AK, Sanyal A, Chaudhuri PP (1992) On characterization of cellular automata with matrix algebra. Inf Sci 61:251–277zbMATHGoogle Scholar
  107. 107.
    Tadaki S (1994) Orbits in one‐dimensional finite linear cellular automata. Phys Rev E 49(2):1168–1173Google Scholar
  108. 108.
    Voorhees B (2008) Representations of rule 90 and related rules for periodic, null, and half-infinite boundary conditions. J Cell Autom 3(1):1–25MathSciNetzbMATHGoogle Scholar
  109. 109.
    Davis PJ (1979) Circulant Matrices. Wiley-Interscience, NYzbMATHGoogle Scholar
  110. 110.
    Culik II K (1987) On invertible cellular automata. Complex Syst 1:1035–1044MathSciNetzbMATHGoogle Scholar
  111. 111.
    Toffoli T, Margolis N (1990) Invertible cellular automata: A review. Physica D 45:229–253MathSciNetzbMATHGoogle Scholar
  112. 112.
    Kari J (1990) Reversibility of 2D cellular is undecidable. Physica D 45:379–385MathSciNetzbMATHGoogle Scholar
  113. 113.
    Sutner K (1991) De Bruijn graphs and linear cellular automata. Complex Syst 5(1):19–30MathSciNetzbMATHGoogle Scholar
  114. 114.
    Morita K (1994) Reversible cellular automata. J Inf Process Soc Japan 35:315–321Google Scholar
  115. 115.
    Moraal H (2000) Graph-theoretical characterization of invertible cellular automata.Physica D 141:1–18MathSciNetzbMATHGoogle Scholar
  116. 116.
    Voorhees B (1994) A note on injectivity of additive cellular automata. Complex Syst 8(3):151–159MathSciNetzbMATHGoogle Scholar
  117. 117.
    Lind DA (1984) Applications of ergodic theory and sofic systems to cellular automata.Physica D 10:36–44MathSciNetGoogle Scholar
  118. 118.
    Jen E (1989) Limit cycles in one‐dimensional cellular automata. In: Stein DL (ed) Lectures in the Sciences of Complexity. Addison Wesley, ReadingGoogle Scholar
  119. 119.
    Elspas B (1959) The theory of autonomous linear sequential networks. TRE Trans Circuits CT-6:45–60Google Scholar
  120. 120.
    Stevens JG, Rosensweig RE, Cerkanowicz AE (1993) Transient and cyclic behavior of cellular automata with null boundary conditions.J Stat Phys 73(1,2):159–174MathSciNetzbMATHGoogle Scholar
  121. 121.
    Stevens JG (1999) On the construction of state diagrams for cellular automata with additive rules. Inf Sci 115:43–59MathSciNetzbMATHGoogle Scholar
  122. 122.
    Thomas DM, Stevens JG, Letteiri S (2006) Characteristic and minimal polynomials of linear cellular automata. Rocky Mountain J Math 36(3):1077–1092MathSciNetzbMATHGoogle Scholar
  123. 123.
    Sutner K (1988) On σ-automata. Complex Syst 2(1):1–28MathSciNetzbMATHGoogle Scholar
  124. 124.
    Sutner K (1988) Additive automata on graphs. Complex Syst 2:649–661MathSciNetzbMATHGoogle Scholar
  125. 125.
    Sutner K (2000) Sigma-automata and Chebyschev polynomials. Theor Comput Sci 230:49–73MathSciNetzbMATHGoogle Scholar
  126. 126.
    Sutner K (2001) Decomposition of additive CA. Complex Syst 13(2):245–270MathSciNetzbMATHGoogle Scholar
  127. 127.
    Lidl R, Pilz G (1984) Applied Abstract Algebra. Springer, NYzbMATHGoogle Scholar
  128. 128.
    Voorhees B (1993) Predecessors of cellular automata states: I.Additive automata. Physica D 68:283–292MathSciNetzbMATHGoogle Scholar
  129. 129.
    Bulitko V, Voorhees B, Bulitko V (2006) Discrete baker transformation for linear cellular automata analysis. J Cell Autom 1:40–70MathSciNetGoogle Scholar
  130. 130.
    Arnold V, Aviz A (1968) Ergodic Problems of Classical Mechanics. Benjamin, NYGoogle Scholar
  131. 131.
    Illichinsky A (2001) Cellular Automata: A Discrete Universe. World Scientific, SingaporeGoogle Scholar
  132. 132.
    Wuensche A, Lesser M (1992) The Global Dynamics of Cellular Automata. Addison Wesley, ReadingzbMATHGoogle Scholar
  133. 133.
    Chaitin G (2006) Meta Math! Vintage, NYGoogle Scholar

Books and Reviews

  1. 134.
    Wolfram S (1994) Cellular Automata and Complexity. Addison Wesley, ReadingzbMATHGoogle Scholar
  2. 135.
    Wolfram S (2002) A New Kind of Science. Wolfram Media, ChampaignGoogle Scholar
  3. 136.
    Legendi T (1987) Parallel Processing by Cellular Automata and Arrays. Kluwer, DordrechtzbMATHGoogle Scholar
  4. 137.
    Rietman E (1989) Exploring the Geometry of Nature: Computer Modeling of Chaos, Fractals, Cellular Automata, and Neural Networks. McGraw-Hill, NYGoogle Scholar
  5. 138.
    Manneville P, Boccara N, Vishniac GY, Bidaux R (1990) Cellular Automata and Modeling of Complex Physical Systems. Springer, NYGoogle Scholar
  6. 139.
    Goles E, Martinez S (eds) (1992) Statistical Physics, Automata Networks and Dynamical Systems. Kluwer, DordrechtzbMATHGoogle Scholar
  7. 140.
    Boccara N, Goles E, Martenez S (1993) Cellular Automata and Cooperative Systems. Kluwer, DordrechtzbMATHGoogle Scholar
  8. 141.
    Goles E, Martinez S (1994) Cellular Automata, Dynamical Systems and Neural Networks. Kluwer, DordrechtzbMATHGoogle Scholar
  9. 142.
    Adamatzky A (1994) Identification of Cellular Automata. Taylor & Francis, LondonzbMATHGoogle Scholar
  10. 143.
    Perdang JM, Lejeune A (eds) (1994) Cellular Automata: Prospects in Astronomy and Astrophysics. World Scientific, SingaporeGoogle Scholar
  11. 144.
    Goles E, Martenez S (1996) Dynamics of Complex Interacting Systems. Kluwer, DordrechtzbMATHGoogle Scholar
  12. 145.
    Sipper M (1997) Evolution of Parallel Cellular Machines: The Cellular Programming Approach. Springer, NYGoogle Scholar
  13. 146.
    Delorme M, Mazoyer J (eds) (1998) Cellular Automata: A Parallel Model. Kluwer, DordrechtGoogle Scholar
  14. 147.
    Goles E, Martinez S (eds) (1999) Cellular Automata and Complex Systems. Kluwer, DordrechtzbMATHGoogle Scholar
  15. 148.
    Crutchfield JP, Hanson JE (1999) Computational Mechanics of Cellular Processes. University of California Press, BerkeleyGoogle Scholar
  16. 149.
    Wolf-Gladrow DA (2000) Lattice-Gas Cellular Automata and Lattice Boltzmann Models. Springer, NYzbMATHGoogle Scholar
  17. 150.
    Lafe O (2000) Cellular Automata Transformations: Theory and Applications in Multimedia Compression, Encryption and Modeling. Kluwer, DordrechtzbMATHGoogle Scholar
  18. 151.
    Yang T (2001) Cellular Image Processing. Nova, NYGoogle Scholar
  19. 152.
    Griffeath D, Moore C (eds) (2003) New Constructions in Cellular Automata. Oxford University Press, NYzbMATHGoogle Scholar
  20. 153.
    Deutsch A, Dormann S (2004) Cellular Automata Modeling of Biological Pattern Formation: Characterization, Applications, and Analysis. Springer, BerlinGoogle Scholar
  21. 154.
    Amos M (2004) Cellular Computing. Oxford University Press, NYzbMATHGoogle Scholar
  22. 155.
    Rothman DH, Zaleski S (2004) Lattice-Gas Cellular Automata: Simple Models of Complex Hydrodynamics. Cambridge University Press, CambridgeGoogle Scholar
  23. 156.
    Batty M (2005) Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based Models, and Fractals. MIT Press, CambridgeGoogle Scholar
  24. 157.
    Kier LB, Seybold PG, Cheng C-K (2005) Cellular Automata Modeling of Chemical Systems: A Testbook and Laboratory Manual. Springer, NYGoogle Scholar
  25. 158.
    Schiff JL (2007) Cellular Automata: A Discrete View. Wiley-Interscience, NYGoogle Scholar
  26. 159.
    Gros C (2007) Complex and Adaptive Dynamical Systems: A Primer. Springer, NYGoogle Scholar
  27. 160.
    Bandini S, Moroni L (eds) (1996) ACRI `96: Proceedings of the 2nd International Conference on Cellular Automata for Research and Industry. Springer, NYGoogle Scholar
  28. 161.
    Bandini S, Serra R, Liverani FS (eds) (1998) Cellular Automata: Research Towards Industry, ACRI `98: Proceedings of the 3rd International Conference on Cellular Automata for Research and Industry. Springer, NYGoogle Scholar
  29. 162.
    Bandini S, Worsch T (eds) (2000) Theory and Practical Issues on Cellular Automata: Proceedings of the 4th International Conference on Cellular Automata for Research and Industry. Springer, NYGoogle Scholar
  30. 163.
    Tomassini M, Chopard B (eds) (2002) Cellular Automata: Proceedings of the 5th International Conference on Cellular Automata for Research and Industry. Springer, NYzbMATHGoogle Scholar
  31. 164.
    Sloot PMA, Chopard B, Hoekstra AG (eds) (2004) Cellular Automata: Proceedings of the 6th International Conference on Cellular Automata for Research and Industry. Springer, NYzbMATHGoogle Scholar
  32. 165.
    El Yacoubi S, Chopard B, Bandini S (eds) (2006) Cellular Automata: Proceedings of the 7th International Conference on Cellular Automata for Research and Industry. Springer, NYzbMATHGoogle Scholar


  1. 166. Gives many links to other sites on cellular automata
  2. 167. Provides reviews of theoretical aspects of cellular automata
  3. 168. An excellent site; it provides access to the Discrete Dynamics Lab program, a valuable asset in work on cellular automata and random Boolean networks
  4. 169. Provides access to a number of worthwhile unpublished papers and a number of useful references

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Burton Voorhees
    • 1
  1. 1.Center for ScienceAthabasca UniversityAthabascaCanada