Encyclopedia of Metalloproteins

2013 Edition
| Editors: Robert H. Kretsinger, Vladimir N. Uversky, Eugene A. Permyakov

Cytochrome c Oxidase, CuA Center

  • Peter M. H. Kroneck
  • Martha E. Sosa Torres
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-1533-6_93

Synonyms

Definitions

CuA is a binuclear, mixed-valent [Cu(1.5+)-Cu(1.5+)], spin S = 1/2 electron transfer center present in respiratory chains of numerous organisms, specifically in cytochrome c oxidase (CcO) which reduces O2 to two molecules of H2O and nitrous oxide (N2O) reductase (N2OR) which reduces N2O to N2 and H2O. The core structure of CuA consists of a Cu2S2 rhomb with unique spectroscopic features, specifically the seven-line electron paramagnetic resonance spectrum observed at low temperatures.

Structure and Function of CuA

Occurrence

CcO (ferrocytochrome c:oxygen oxidoreductase; cytochrome aa 3; complex IV; EC 1.9.3.1) is the key enzyme of cell respiration in all eukaryotes and many prokaryotes. In bacteria, CcO is located in the cell membrane, whereas in eukaryotic cells, the enzyme resides in the inner mitochondrial membrane (Wikström 2010; Yoshikawa et al. 2011). Mammalian and “classical” bacterial CcOs carry three...
This is a preview of subscription content, log in to check access.

References

  1. Adman ET (1995) A taste of copper. Nat Struct Biol 2:929–931CrossRefPubMedGoogle Scholar
  2. Babcock GT, Wikström M (1992) Oxygen activation and the conservation of energy in cell respiration. Nature 356:301–309CrossRefPubMedGoogle Scholar
  3. Beinert H (1997) Copper A of cytochrome c oxidase, a novel, long-embattled, biological electron-transfer site. Eur J Biochem 245:521–532CrossRefPubMedGoogle Scholar
  4. Castresana J, Lübben M, Saraste M, Higgins DG (1994) Evolution of cytochrome oxidase, an enzyme older than atmospheric oxygen. EMBO J 13:2516–2525PubMedGoogle Scholar
  5. Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376:660–669CrossRefPubMedGoogle Scholar
  6. Kannt A, Michel H (2001) Bacterial cytochrome c oxidase. In: Messerschmidt A, Huber R, Poulos T, Wieghardt K (eds) Handbook of metalloproteins. Wiley, Chichester, pp 331–347.Google Scholar
  7. Neese (1997) Electronic structure and spectroscopy of novel copper chromophores in biology. PhD thesis, Universitaet KonstanzGoogle Scholar
  8. Savelieff MG, Lu Y (2010) CuA centers and their biosynthetic models in azurin. J Biol Inorg Chem 15:461–483CrossRefPubMedGoogle Scholar
  9. Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1995) Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 Å resolution. Science 269:1069–1074CrossRefPubMedGoogle Scholar
  10. Wikström M (2010) Cytochrome c oxidase. In: Encylopedia of life sciences. Wiley, Chicester, pp 1–10Google Scholar
  11. Yoshikawa S, Muramoto K, Shinzawa-Itoh K (2011) Proton-pumping mechanism of cytochrome c oxidase. Ann Rev Biophys 40:205–223CrossRefGoogle Scholar
  12. Zumft WG, Kroneck PMH (2007) Respiratory transformation of nitrous oxide (N2O) to dinitrogen by Bacteria and Archaea. Adv Microb Physiol 52:107–225CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Peter M. H. Kroneck
    • 1
  • Martha E. Sosa Torres
    • 2
  1. 1.Department of BiologyUniversity of KonstanzKonstanzGermany
  2. 2.Facultad de QuimicaUniversidad Nacional Autonoma de Mexico, Ciudad UniversitariaCoyoacan, Mexico DFMexico