Encyclopedia of Metalloproteins

2013 Edition
| Editors: Robert H. Kretsinger, Vladimir N. Uversky, Eugene A. Permyakov

Cobalt Transporters

Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-1533-6_74

Synonyms

Definition

Import systems that transport the transition metal ion across cell membranes in order to provide it for synthesis of coenzyme B12 and for incorporation into cobalt-containing enzymes.

Background

Cobalt is a trace nutrient for prokaryotes and utilized for biosynthesis of the cobalt-containing coenzyme B12 (see also  Vitamin B12), and for incorporation into noncorrin  Co-containing enzymes. Animals must take up vitamin B12 with their diet or from intestinal prokaryotic producers. In higher plants, physiological roles for corrin and noncorrin cobalt enzymes have so far not been established. Nevertheless, beneficial effects of Co2+ for plant growth are known (Pilon-Smits et al. 2009). These effects may be due to stimulating growth of bacteria in the rhizosphere and of root-nodulating bacterial endosymbionts.

The focus of this short survey is on import systems in prokaryotes that transport Co 2+ions with high affinity and...
This is a preview of subscription content, log in to check access

References

  1. Cheng J, Poduska B, Morton RA, Finan TM (2011) An ABC-type cobalt transport system is essential for growth of Sinorhizobium meliloti at trace metal concentrations. J Bacteriol 193:4405–4416CrossRefPubMedGoogle Scholar
  2. Degen O, Eitinger T (2002) Substrate specificity of nickel/cobalt permeases: insights from mutants altered in transmembrane domains I and II. J Bacteriol 184:3569–3577CrossRefPubMedGoogle Scholar
  3. Eitinger T, Rodionov DA, Grote M, Schneider E (2011) Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions. FEMS Microbiol Rev 35:3–67CrossRefPubMedGoogle Scholar
  4. Eitinger T, Suhr J, Moore L, Smith JAC (2005) Secondary transporters for nickel and cobalt ions: theme and variations. Biometals 18:399–405CrossRefPubMedGoogle Scholar
  5. Kiefer P, Buchhaupt M, Christen P, Kaup B, Schrader J, Vorholt J (2009) Metabolite profiling uncovers plasmid-induced cobalt limitation under methylotrophic growth conditions. PLoS ONE 4:e7831CrossRefPubMedGoogle Scholar
  6. Moomaw AS, Maguire ME (2008) The unique nature of Mg2+ channels. Physiology 23:275–285CrossRefPubMedGoogle Scholar
  7. Niegowski D, Eshaghi S (2007) The CorA family: structure and function revisited. Cell Mol Life Sci 64:2564–2574CrossRefPubMedGoogle Scholar
  8. Pilon-Smits EAH, Quinn CF, Tapken W et al (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274CrossRefPubMedGoogle Scholar
  9. Rodionov DA, Hebbeln P, Gelfand MS, Eitinger T (2006) Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATP-binding cassette transporters. J Bacteriol 188:317–327CrossRefPubMedGoogle Scholar
  10. Rodionov DA, Hebbeln P, Eudes A et al (2009) A novel class of modular transporters for vitamins in prokaryotes. J Bacteriol 191:42–51CrossRefPubMedGoogle Scholar
  11. Schauer K, Rodionov DA, de Reuse H (2008) New substrates for TonB-dependent transport: do we only see the ‘tip of the iceberg?’. Trends Biochem Sci 33:330–338CrossRefPubMedGoogle Scholar
  12. Siche S, Neubauer O, Hebbeln P, Eitinger T (2010) A bipartite S unit of an ECF-type cobalt transporter. Res Microbiol 161:824–829CrossRefPubMedGoogle Scholar
  13. Xia Y, Lundbäck A-K, Sahaf N, Nordlund G, Brzezinski P, Eshaghi S (2011) Co2+ selectivity of Thermotoga maritima CorA and its inability to regulate Mg2+ homeostasis present a new class of CorA proteins. J Biol Chem 286:16525–16532CrossRefPubMedGoogle Scholar
  14. Zhang Y, Rodionov DA, Gelfand MS, Gladyshev VN (2009) Comparative genomic analyses of nickel, cobalt and vitamin B12 utilization. BMC Genomics 10:78CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institut für Biologie/Mikrobiologie, Humboldt-Universität zu BerlinBerlinGermany