Encyclopedia of Metalloproteins

2013 Edition
| Editors: Robert H. Kretsinger, Vladimir N. Uversky, Eugene A. Permyakov


  • David O’ConnellEmail author
  • Mikael Bauer
  • Christopher B. Marshall
  • Mitsu Ikura
  • Sara Linse
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-1533-6_67



  • EF-hand: Helix-loop-helix motif obeying a 29-residue consensus sequence with hydrophobic and Ca2+-ligating residues in defined positions, typically forming a pentagonal bipyramidal coordination sphere

  • Ca2+-signaling proteins: Proteins for which Ca2+ binding preferentially stabilizes a form that activates other proteins

  • Domain: Independent folding unit

  • Chromophoric chelator: A metal-binding dye which changes its optical spectrum upon chelation


The discovery of calmodulin (CaM) was reported in 1970 independently by Cheung and by Kakiuchi, Yamazaki, and Nakajima. They found that cyclic nucleotide phosphodiesterase was modulated by a Ca2+-dependent activator protein, which was named calmodulin for calcium-modulated protein.


CaM is a 17-kDa protein ubiquitously expressed in eukaryotic cells constituting at least 0.1% of total cellular protein, with higher abundance in brain and...

This is a preview of subscription content, log in to check access.


  1. André I, Kesvatera T, Jönsson B et al (2004) The role of electrostatic interactions in calmodulin-peptide complex formation. Biophys J 87:1929–1938CrossRefPubMedGoogle Scholar
  2. André I, Kesvatera T, Jönsson B et al (2006) Salt enhances calmodulin-target interaction. Biophys J 90:2903–2910CrossRefPubMedGoogle Scholar
  3. Babu YS, Bugg CE, Cook WJ (1988) Structure of calmodulin refined at 2.2 Å resolution. J Mol Biol 204:191–204CrossRefPubMedGoogle Scholar
  4. Bauer MC, O’Connell D, Cahill DJ et al (2008) Calmodulin binding to the polybasic C-termini of STIM proteins involved in store operated calcium entry. Biochemistry 47:6089–6091CrossRefPubMedGoogle Scholar
  5. Bayley PM, Findlay WA, Martin SR (1996) Target recognition by calmodulin: dissecting the kinetics and affinity of interaction using short peptide sequences. Protein Sci 5:1215–1228CrossRefPubMedGoogle Scholar
  6. Berggård T, Arrigoni G, Olsson O et al (2006) 140 mouse brain Ca2+-calmodulin-binding proteins identified by affinity chromatography and tandem mass spectrometry. J Proteom Res 5:669–687CrossRefGoogle Scholar
  7. Brzeska H, Venyaminov SV, Grabarek Z et al (1983) Comparative studies on thermostability of calmodulin, skeletal muscle troponin C and their tryptic fragments. FEBS Lett 153:169–173CrossRefPubMedGoogle Scholar
  8. Deisseroth K, Heist EK, Tsien RW (1998) Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature 392:198–202CrossRefPubMedGoogle Scholar
  9. Dolmetsch RE, Xu K, Lewis RS (1998) Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392:933–936CrossRefPubMedGoogle Scholar
  10. Drum CL, Yan SZ, Bard J, Shen YQ, Lu D, Soelaiman S, Grabarek Z, Bohm A, Tang WJ (2002) Structural basis for the activation of anthrax adenylyl cyclase exotoxin by calmodulin. Nature 415:396–402CrossRefPubMedGoogle Scholar
  11. Evenäs J, Malmendal A, Akke M (2001) Dynamics of the transition between open and closed conformations in a calmodulin C-terminal domain mutant. Structure 9:185–195CrossRefPubMedGoogle Scholar
  12. Ikura M, Clore GM, Gronenborn AM et al (1992) Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science 256:632–638CrossRefPubMedGoogle Scholar
  13. Ikura M, Ames JB (2006) Genetic polymorphism and protein conformational plasticity in the calmodulin superfamily: two ways to promote multifunctionality. Proc Natl Acad Sci USA 103:1159–1164CrossRefPubMedGoogle Scholar
  14. Linse S, Drakenberg T, Forsén S (1986) Mastoparan binding induces a structural change affecting both the N-terminal and C-terminal domains of Calmodulin. A 113Cd-NNR Study. FEBS Lett 199:28–32CrossRefPubMedGoogle Scholar
  15. Linse S, Helmersson A, Forsén S (1991) Calcium binding to calmodulin and its globular domains. J Biol Chem 266:8050–8054PubMedGoogle Scholar
  16. Linse S, Voorhies NE et al (2000) An EF-hand phage display study of calmodulin subdomain pairing. J Mol Biol 296:473–486CrossRefPubMedGoogle Scholar
  17. Malmendal A, Linse S, Evenäs J et al (1989) Battle for the EF-hands: magnesium-calcium interference in calmodulin. Biochemistry 38:11844–11850CrossRefGoogle Scholar
  18. Martin SR, Andersson Teleman A, Bayley PM, Drakenberg T, Forsen S (1985) Kinetics of calcium dissociation from calmodulin and its tryptic fragments. A stopped-flow fluorescence study using Quin 2 reveals a two-domain structure. Eur J Biochem 151:543–550CrossRefPubMedGoogle Scholar
  19. Meador WE, Means AR, Quiocho FA (1992) Target enzyme recognition by calmodulin: 2.4 a structure of a calmodulin-peptide complex. Science 257:1251–1255CrossRefPubMedGoogle Scholar
  20. Miyawaki A, Llopis J, Heim R et al (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887CrossRefPubMedGoogle Scholar
  21. O’Connell DJ, Bauer MC, O’Brien J et al (2010) Integrated protein array screening and high throughput validation of 70 novel neural calmodulin binding proteins. Mol Cell Proteomics 9:1118–1132CrossRefPubMedGoogle Scholar
  22. Pitt GS (2007) Calmodulin and CaMKII as molecular switches for cardiac ion channels. Cardiovasc Res 73:641–647CrossRefPubMedGoogle Scholar
  23. Rhoads AR, Friedberg F (1997) Sequence motifs for calmodulin recognition. FASEB J 11:331–340PubMedGoogle Scholar
  24. Wayman GA, Lee YS, Tokumitsu H et al (2008) Calmodulin-kinases: modulators of neuronal development and plasticity. Neuron 59:914–931CrossRefPubMedGoogle Scholar
  25. Yamniuk AP, Vogel HJ (2004) Calmodulin’s flexibility allows for promiscuity in its interactions with target proteins and peptides. Mol Biotechnol 27:33–57CrossRefPubMedGoogle Scholar
  26. Zhang M, Tanaka T, Ikura M (1995) Calcium-induced conformational transition revealed by the solution structure of apo calmodulin. Nat Struct Biol 2(9):758–767CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • David O’Connell
    • 1
    Email author
  • Mikael Bauer
    • 2
  • Christopher B. Marshall
    • 3
  • Mitsu Ikura
    • 3
  • Sara Linse
    • 2
  1. 1.University College Dublin, Conway InstituteDublinIreland
  2. 2.Department of Biochemistry and Structural BiologyLund University, Chemical CentreLundSweden
  3. 3.Ontario Cancer Institute and Department of Medical BiophysicsUniversity of TorontoTorontoCanada