Encyclopedia of Metalloproteins

2013 Edition
| Editors: Robert H. Kretsinger, Vladimir N. Uversky, Eugene A. Permyakov

Calcium-Binding Proteins, Overview

  • Robert H. KretsingerEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-1533-6_63



Metal ions play several major roles in the structures and functions of proteins. The bindings of some metal ions increase the stabilities of proteins or of protein domains. Some transition metal ions take part in catalysis in many enzymes. The oxygen, nitrogen, and sulfur atoms of several amino acid side chains, as well as the carbonyl oxygen of the peptide group and the carboxylate of the C-terminal residue may be involved in coordination of metal ions. Binding of the Ca2+ion is limited to not only oxygen-containing ligands, primarily the carboxylates of Asp (aspartic acid) and of Glu (glutamic acid), but also the oxygens of Asn (asparagine), Gln (glutamine), Ser (serine), Thr (threonine), Tyr (tyrosine), and of the main chain peptides. A...

This is a preview of subscription content, log in to check access.


  1. Beard NA, Wei L, Dulhunty AF (2009) Ca2+ signaling in striated muscle: the elusive roles of triadin, junctin, and calsequestrin. Eur Biophys J 39:27–36CrossRefPubMedGoogle Scholar
  2. Berridge MJ (2006) Calcium microdomains: organization and function. Cell Calcium 40:405–412CrossRefPubMedGoogle Scholar
  3. Corbin JA, Evans JH, Landgraf KE, Falke JJ (2007) Mechanism of specific membrane targeting by C2 domains: localized pools of target lipids enhance Ca2+ affinity. Biochemistry 46:4322–4336CrossRefPubMedGoogle Scholar
  4. Deban L, Bottazzi B, Garlanda C, de la Torre YM, Mantovani A (2009) Pentraxins: multifunctional proteins at the interface of innate immunity and inflammation. Biofactors 35:138–145CrossRefPubMedGoogle Scholar
  5. Gerke V, Creutz CE, Moss SE (2005) Annexins: linking Ca2+ signaling to membrane dynamics. Nat Rev Mol Cell Biol 6:449–461CrossRefPubMedGoogle Scholar
  6. Gouaux E, Mackinnon R (2005) Principles of selective ion transport in channels and pumps. Science 310(5753):1461–1465CrossRefPubMedGoogle Scholar
  7. Hirabayashi T, Murayama T, Shimizu T (2004) Regulatory mechanism and physiological role of cytosolic phospholipase A2. Biol Pharm Bull 27(8):1168–1173CrossRefPubMedGoogle Scholar
  8. Hofer AM (2005) Another dimension to calcium signaling: a look at extracellular calcium. J Cell Sci 118:855–862CrossRefPubMedGoogle Scholar
  9. Inesi G, Prasad AM, Pilankatta R (2008) The Ca2+ ATPase of cardiac sarcoplasmic reticulum: physiological role and relevance to diseases. Biochem Biophys Res Commun 369(1):182–187CrossRefPubMedGoogle Scholar
  10. Michalak M, Groenendyk J, Szabo E, Gold LI, Opas M (2009) Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J 417(3):651–666CrossRefPubMedGoogle Scholar
  11. Miwa N, Uebi T, Kawamura S (2008) S100-annexin complexes – biology of conditional association. FEBS J 275(20):4945–4955CrossRefPubMedGoogle Scholar
  12. Permyakov EA (2005) α-Lactalbumin. Nova Science, New YorkGoogle Scholar
  13. Permyakov EA (2006) Parvalbumin. Nova Science, New YorkGoogle Scholar
  14. Permyakov EA (2009) Metalloproteomics. Wiley, HobokenCrossRefGoogle Scholar
  15. Permyakov EA, Kretsinger RH (2009) Cell signaling, beyond cytosolic calcium in eukaryotes. J Inorg Biochem 103:77–86CrossRefPubMedGoogle Scholar
  16. Permyakov EA, Kretsinger RH (2010) Calcium binding proteins. Wiley, HobokenCrossRefGoogle Scholar
  17. Südhof TC (2002) Synaptotagmins: why so many? J Biol Chem 277:7629–7632CrossRefPubMedGoogle Scholar
  18. Williams DB (2006) Beyond lectins: the calnexin/calreticulin chaperone system of the endoplasmic reticulum. J Cell Sci 119:615–623CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of BiologyUniversity of VirginiaCharlottesvilleUSA