Encyclopedia of Metalloproteins

2013 Edition
| Editors: Robert H. Kretsinger, Vladimir N. Uversky, Eugene A. Permyakov

CusCFBA Copper/Silver Efflux System

  • Megan M. McEvoy
  • Alayna M. George Thompson
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-1533-6_527

Synonyms

Definitions

Tripartite efflux complexes are protein export systems that span both membranes in Gram-negative bacteria and are involved in efflux of compounds from the cell. These systems are composed of three proteins: an inner membrane protein, an outer membrane protein, and a periplasmic adaptor that connects the two membrane proteins.

RND proteins are Resistance-nodulation-and cell division proteins. These are membrane proteins that expel compounds from bacterial cells using the protein gradient as an energy source. In Gram-negative tripartite efflux complexes, RND proteins are the inner membrane component.

MFPs are membrane fusion proteins; they function as the adaptors in the tripartite efflux complexes. They are also called periplasmic adaptor proteins.

Periplasm is the region between the inner and outer membranes in Gram-negative bacteria.

Introduction

Several transition metals are necessary as trace...

This is a preview of subscription content, log in to check access.

References

  1. Bagai I, Liu W, Rensing C et al (2007) Substrate-linked conformational change in the periplasmic component of a Cu(I)/Ag(I) efflux system. J Biol Chem 282(49):35695–35702CrossRefPubMedGoogle Scholar
  2. Bagai I, Rensing C, Blackburn NJ et al (2008) Direct metal transfer between periplasmic proteins identifies a bacterial copper chaperone. Biochemistry 47(44):11408–11414CrossRefPubMedGoogle Scholar
  3. Franke S, Glass G, Rensing C et al (2003) Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J Bacteriol 185:3804–3812CrossRefPubMedGoogle Scholar
  4. Kershaw CJ, Brown NL, Constantinidou C et al (2005) The expression profile of Escherichia coli K-12 in response to minimal, optimal and excess copper concentrations. Microbiology 151:1187–1198CrossRefPubMedGoogle Scholar
  5. Kim EH, Rensing C, McEvoy MM (2010) Chaperone-mediated copper handing in the periplasm. Nat Prod Rep 27:711–719CrossRefPubMedGoogle Scholar
  6. Kim EH, Nies DH, McEvoy MM et al (2011) Switch or funnel: how RND-type transport systems control periplasmic metal homeostasis. J Bacteriol 193(10):2381–2387CrossRefPubMedGoogle Scholar
  7. Kulathila R, Kulathila R, Indic M et al (2011) Crystal structure of Escherichia coli CusC, the outer membrane component of a heavy metal efflux pump. PLoS One 6:1–7CrossRefGoogle Scholar
  8. Loftin IR, Franke S, Blackburn NJ et al (2007) Unusual Cu(I)/Ag(I) coordination of Escherichia coli CusF as revealed by atomic resolution crystallography and X-ray absorption spectroscopy. Protein Sci 16:2287–2293CrossRefPubMedGoogle Scholar
  9. Long F, Su CC, Zimmerman MT et al (2010) Crystal structures of the CusA efflux pump suggest methionine-mediated transport. Nature 467:484–488CrossRefPubMedGoogle Scholar
  10. Long F, Su CC, Lai HT et al (2012) Structure and mechanism of the tripartite CusCBA heavy-metal efflux complex. Philos Trans R Soc B 367:1047–1058CrossRefGoogle Scholar
  11. Mealman TD, Blackburn NJ, McEvoy MM (2012) Metal export by CusCFBA, the periplasmic Cu(I)/Ag(I) transport system of E. coli. Curr Top Membr (in press)Google Scholar
  12. Murakami S, Nakashima R, Yamashita E et al (2006) Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443:173–179CrossRefPubMedGoogle Scholar
  13. Nehme D, Poole K (2007) Assembly of the MexAB-OprM multidrug pump of Pseudomonas aeruginosa: component interactions defined by the study of pump mutant suppressors. J Bacteriol 189:6118–6127CrossRefPubMedGoogle Scholar
  14. Seeger MA, Schniefner A, Eicher T et al (2006) Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 313:1295–1298CrossRefPubMedGoogle Scholar
  15. Su CC, Yang R, Long R et al (2009) Crystal structure of the membrane fusion protein CusB from Escherichia coli. J Mol Biol 393:342–355CrossRefPubMedGoogle Scholar
  16. Su CC, Long F, Zimmerman MT et al (2011) Crystal structure of the CusBA heavy-metal efflux complex of Escherichia coli. Nature 470:558–562CrossRefPubMedGoogle Scholar
  17. Xue Y, Davis AV, Balakrishnan G et al (2008) Cu(I) recognition via cation-p and methionine interactions in CusF. Nat Chem Biol 2:107–109CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of ArizonaTucsonUSA