Skip to main content

Catalases as NAD(P)H-Dependent Tellurite Reductases

  • Reference work entry
Encyclopedia of Metalloproteins

Synonyms

Bacterial tellurite resistance; Enzymatic tellurite reduction

Definition

Most aerobic organisms are exposed to oxidative stress, which results in the generation of free reactive oxygen species (superoxide, hydrogen peroxide, hydroxyl radical) that interfere with the cell’s metabolism, cause oxidative damage of cellular macromolecules, and may eventually also cause cell death. Thus, eliminating these free oxygen radicals is absolutely mandatory for cell survival.

In this context, catalases are antioxidant enzymes that accelerate the rate of hydrogen peroxide decomposition to molecular oxygen and water with near kinetic perfection. Exhibiting one of the highest known turnover numbers, a catalase molecule can convert approximately 4 × 107 substrate molecules to the referred products each second. The catalytic efficiency (kcat/Km) of catalase (4.0 × 108 M−1 s−1) is very high indeed. Because the efficiency is at the diffusion limit, catalase is said to have achieved “catalytic...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avazéri C, Turner R, Pommier J, Weiner J et al (1997) Tellurite reductase activity of nitrate reductase is responsible for the basal resistance of Escherichia coli to tellurite. Microbiology 143:1181–1189

    Article  PubMed  Google Scholar 

  • Calderón IL, Arenas FA, Pérez JM, Fuentes DE et al (2006) Catalases are NAD(P)H-dependent tellurite reductases. PLoS One 20(1):e70

    Article  CAS  Google Scholar 

  • Castro ME, Molina R, Díaz W, Pichuantes SE et al (2008) The dihydrolipoamide dehydrogenase of Aeromonas caviae ST exhibits NADH-dependent telluritereductase activity. Biochem Biophys Res Commun 375:91–94

    Article  CAS  PubMed  Google Scholar 

  • Chiong M, González E, Barra R, Vásquez C (1988) Purification and biochemical characterization of tellurite-reducing activities from Thermus thermophilus HB8. J Bacteriol 170:3269–3273

    CAS  PubMed  Google Scholar 

  • Cooper P, Few A (1952) Uptake of potassium tellurite by a sensitive strain of Escherichia coli. J Biochem (Tokyo) 51:552–557

    CAS  Google Scholar 

  • Du S-H, Fang SC (1983) Catalase activity of C3 and C4 species and its relationship to mercury vapor uptake. Environ Exp Bot 23:347–353

    Article  CAS  Google Scholar 

  • Keilin D, Hartree EF (1945) Properties of catalase. Catalysis of coupled oxidation of alcohols. Biochem J 39:293–301

    CAS  Google Scholar 

  • Magos L, Halbach S, Clarkson TW (1978) Role of catalase in the oxidation of mercury vapor. Biochem Pharmacol 27:1373–1377

    Article  CAS  PubMed  Google Scholar 

  • Moore M, Kaplan S (1992) Identification of intrinsic high-level resistance to rare-earth oxides and oxyanions in members of the class Proteobacteria: characterization of tellurite, selenite, and rhodium sesquioxide reduction in Rhodobacter sphaeroides. J Bacteriol 174:1505–1514

    CAS  PubMed  Google Scholar 

  • Moscoso H, Saavedra C, Loyola C, Pichuantes S, Vásquez C (1998) Biochemical characterization of tellurite-reducing activities from Bacillus stearothermophilus V. Res Microbiol 49:389–397

    Article  Google Scholar 

  • Nicholls P, Schonbaum GR (1963) Catalases. In: Boyer P, Lardy H, Myrback K (eds) The enzymes. Academic, New York/London, pp 147–225

    Google Scholar 

  • Ogata M, Aikoh H (1983) The oxidation mechanism of metallic mercury in vitro by catalase. Physiol Chem Phys Med NMR 15:89–91

    CAS  PubMed  Google Scholar 

  • Oshino N, Oshino R, Chance B (1973) The characteristics of the “peroxidatic” reaction of catalase in ethanol oxidation. Biochem J 131:555–563

    CAS  PubMed  Google Scholar 

  • Singh R, Wiseman B, Deemagarn T, Donald LJ, Duckworth HW et al (2004) Catalase-peroxidases (KatG) exhibit NADH oxidase activity. J Biol Chem 279:43098–43106

    Article  CAS  PubMed  Google Scholar 

  • Smith T, Pitts K, McGarvey JA, Summers AO (1998) Bacterial oxidation of mercury metal vapor, Hg(0). Appl Environ Microbiol 64:1328–1332

    CAS  PubMed  Google Scholar 

  • Terai T, Kamamura Y (1958) Tellurite reductase from Mycobacterium avium. J Bacteriol 75:535–539

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio C. Vásquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Calderón, I.L., Vásquez, C.C. (2013). Catalases as NAD(P)H-Dependent Tellurite Reductases. In: Kretsinger, R.H., Uversky, V.N., Permyakov, E.A. (eds) Encyclopedia of Metalloproteins. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1533-6_496

Download citation

Publish with us

Policies and ethics