Encyclopedia of Metalloproteins

2013 Edition
| Editors: Robert H. Kretsinger, Vladimir N. Uversky, Eugene A. Permyakov

Catalases as NAD(P)H-Dependent Tellurite Reductases

Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-1533-6_496

Synonyms

Definition

Most aerobic organisms are exposed to oxidative stress, which results in the generation of free reactive oxygen species (superoxide, hydrogen peroxide, hydroxyl radical) that interfere with the cell’s metabolism, cause oxidative damage of cellular macromolecules, and may eventually also cause cell death. Thus, eliminating these free oxygen radicals is absolutely mandatory for cell survival.

In this context, catalases are antioxidant enzymes that accelerate the rate of hydrogen peroxide decomposition to molecular oxygen and water with near kinetic perfection. Exhibiting one of the highest known turnover numbers, a catalase molecule can convert approximately 4 × 107 substrate molecules to the referred products each second. The catalytic efficiency (kcat/Km) of catalase (4.0 × 108 M−1 s−1) is very high indeed. Because the efficiency is at the diffusion limit, catalase is said to have achieved “catalytic...

This is a preview of subscription content, log in to check access

References

  1. Avazéri C, Turner R, Pommier J, Weiner J et al (1997) Tellurite reductase activity of nitrate reductase is responsible for the basal resistance of Escherichia coli to tellurite. Microbiology 143:1181–1189CrossRefPubMedGoogle Scholar
  2. Calderón IL, Arenas FA, Pérez JM, Fuentes DE et al (2006) Catalases are NAD(P)H-dependent tellurite reductases. PLoS One 20(1):e70CrossRefGoogle Scholar
  3. Castro ME, Molina R, Díaz W, Pichuantes SE et al (2008) The dihydrolipoamide dehydrogenase of Aeromonas caviae ST exhibits NADH-dependent telluritereductase activity. Biochem Biophys Res Commun 375:91–94CrossRefPubMedGoogle Scholar
  4. Chiong M, González E, Barra R, Vásquez C (1988) Purification and biochemical characterization of tellurite-reducing activities from Thermus thermophilus HB8. J Bacteriol 170:3269–3273PubMedGoogle Scholar
  5. Cooper P, Few A (1952) Uptake of potassium tellurite by a sensitive strain of Escherichia coli. J Biochem (Tokyo) 51:552–557Google Scholar
  6. Du S-H, Fang SC (1983) Catalase activity of C3 and C4 species and its relationship to mercury vapor uptake. Environ Exp Bot 23:347–353CrossRefGoogle Scholar
  7. Keilin D, Hartree EF (1945) Properties of catalase. Catalysis of coupled oxidation of alcohols. Biochem J 39:293–301Google Scholar
  8. Magos L, Halbach S, Clarkson TW (1978) Role of catalase in the oxidation of mercury vapor. Biochem Pharmacol 27:1373–1377CrossRefPubMedGoogle Scholar
  9. Moore M, Kaplan S (1992) Identification of intrinsic high-level resistance to rare-earth oxides and oxyanions in members of the class Proteobacteria: characterization of tellurite, selenite, and rhodium sesquioxide reduction in Rhodobacter sphaeroides. J Bacteriol 174:1505–1514PubMedGoogle Scholar
  10. Moscoso H, Saavedra C, Loyola C, Pichuantes S, Vásquez C (1998) Biochemical characterization of tellurite-reducing activities from Bacillus stearothermophilus V. Res Microbiol 49:389–397CrossRefGoogle Scholar
  11. Nicholls P, Schonbaum GR (1963) Catalases. In: Boyer P, Lardy H, Myrback K (eds) The enzymes. Academic, New York/London, pp 147–225Google Scholar
  12. Ogata M, Aikoh H (1983) The oxidation mechanism of metallic mercury in vitro by catalase. Physiol Chem Phys Med NMR 15:89–91PubMedGoogle Scholar
  13. Oshino N, Oshino R, Chance B (1973) The characteristics of the “peroxidatic” reaction of catalase in ethanol oxidation. Biochem J 131:555–563PubMedGoogle Scholar
  14. Singh R, Wiseman B, Deemagarn T, Donald LJ, Duckworth HW et al (2004) Catalase-peroxidases (KatG) exhibit NADH oxidase activity. J Biol Chem 279:43098–43106CrossRefPubMedGoogle Scholar
  15. Smith T, Pitts K, McGarvey JA, Summers AO (1998) Bacterial oxidation of mercury metal vapor, Hg(0). Appl Environ Microbiol 64:1328–1332PubMedGoogle Scholar
  16. Terai T, Kamamura Y (1958) Tellurite reductase from Mycobacterium avium. J Bacteriol 75:535–539PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Laboratorio de Microbiología MolecularUniversidad Andrés BelloSantiagoChile
  2. 2.Laboratorio de Microbiología Molecular, Departamento de BiologíaUniversidad de Santiago de ChileSantiagoChile