Encyclopedia of Metalloproteins

2013 Edition
| Editors: Robert H. Kretsinger, Vladimir N. Uversky, Eugene A. Permyakov

Silicon Nanowires

Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-1533-6_493



Silicon nanowires (SiNWs) are a type of one-dimensional silicon-based nanostructures with diameters smaller than 100 nm and length of micrometer or even longer. SiNWs feature many attractive properties including excellent electronic/mechanical properties, favorable biocompatibility, huge surface-to-volume ratios, surface tailorability, improved multifunctionality, as well as their compatibility with conventional silicon technology.

Metal-catalyzed vapor-liquid-solid (VLS) (Wu and Yang 2001) and oxide-assisted growth (OAG) (Zhang et al. 2003) are widely recognized as two classic methods for synthesizing silicon nanowires (SiNWs) (He et al. 2010). In 1998, the groups of Lieber (Morales and Lieber 1998) and Lee (Zhang et al. 1998) independently reported the method of laser ablation-assisted VLS growth for the synthesis of single-crystal SiNWs with diameters of 6–20 nm and lengths ranging from 1 to 30 μm, realizing the first large-quantity...
This is a preview of subscription content, log in to check access.


  1. He Y, Fan C, Lee ST (2010) Silicon nanostructures for bioapplications. Nano Today 5:282–295CrossRefGoogle Scholar
  2. He Y, Su S, Xu TT, Zhong YL, Zapien JA, Li J, Fan CH, Lee ST (2011a) Silicon nanowires-based highly-efficient SERS-active platform for ultrasensitive DNA detection. Nano Today 6:122–130CrossRefGoogle Scholar
  3. He Y, Zhong YL, Peng F, Wei XP, Su YY, Su S, Gu W, Liao LS, Lee ST (2011b) Highly luminescent water-dispersible silicon nanowires for long-term immunofluorescent cellular imaging. Angew Chem Int Ed 50:3080–3083CrossRefGoogle Scholar
  4. Jung Y, Tong L, Tanaudommongkon A, Cheng JX, Yang C (2009) In vitro and in vivo nonlinear optical imaging of silicon nanowires. Nano Lett 9:2440–2444CrossRefPubMedGoogle Scholar
  5. Kim W, Ng JK, Kunitake ME, Conklin BR, Yang PD (2007) Interfacing silicon nanowires with mammalian cells. J Am Chem Soc 129:7728–7729CrossRefGoogle Scholar
  6. Kim ST, Kim DJ, Kim TJ, Seo DW, Kim TH, Lee SY, Kim KM, Lee SK (2010) Novel streptavidin-functionalized silicon nanowire arrays for CD4 (+) T lymphocyte separation. Nano Lett 10:2877–2883CrossRefPubMedGoogle Scholar
  7. Li Z, Song J, Mantini G, Lu MY, Fang H, Falconi C, Chen LJ, Wang ZL (2009) Quantifying the traction force of a single cell by aligned silicon nanowire array. Nano Lett 9:3575–3580CrossRefPubMedGoogle Scholar
  8. Lv M, Su S, He Y, Huang Q, Hu WB, Li D, Fan CH, Lee ST (2010) Long-term antimicrobial effect of silicon nanowires decorated with silver nanoparticles. Adv Mater 22:5463–5467CrossRefPubMedGoogle Scholar
  9. Ma DDD, Lee CS, Au FCK, Tong SY, Lee ST (2003) Small-diameter silicon nanowire surfaces. Science 299:1874–1877CrossRefPubMedGoogle Scholar
  10. Morales AM, Lieber CM (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279:208–211CrossRefPubMedGoogle Scholar
  11. Patolsky F, Timko BP, Yu GH, Fang Y, Greytak AB, Zheng GF, Lieber CM (2006) Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313:1100–1104CrossRefPubMedGoogle Scholar
  12. Peng KQ, Yan YJ, Gao SP, Zhu J (2002) Synthesis of large-scale silicon nanowire arrays via self-assembling nanoelectrochemistry. Adv Mater 14:1164–1167CrossRefGoogle Scholar
  13. Su YY, Wei XP, Peng F, Zhong YL, Lu YM, Su S, Xu TT, Lee ST, He Y (2012) Gold nanoparticles-decorated silicon nanowires as highly efficient near-infrared hyperthermia agents for cancer cells destruction. Nano Lett 12:1845–1850CrossRefPubMedGoogle Scholar
  14. Wu YY, Yang PD (2001) Direct observation of vapor-liquid-solid nanowire growth. J Am Chem Soc 123:3165–3166CrossRefGoogle Scholar
  15. Zhang YF, Tang YH, Wang N, Yu DP, Lee CS, Bello I, Lee ST (1998) Silicon nanowires prepared by laser ablation at high temperature. Appl Phys Lett 72:1835–1837CrossRefGoogle Scholar
  16. Zhang RQ, Lifshitz Y, Lee ST (2003) Oxide-assisted growth of semiconducting nanowires. Adv Mater 15:635–640CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of Functional Nano & Soft MaterialsSoochow UniversityJiangsuChina
  2. 2.Laboratory of Physical BiologyShanghai Institute of Applied PhysicsShanghaiChina
  3. 3.National Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical EngineeringNanjing UniversityNanjingChina