Encyclopedia of Metalloproteins

2013 Edition
| Editors: Robert H. Kretsinger, Vladimir N. Uversky, Eugene A. Permyakov

Calcium in Health and Disease

  • Marcus C. Schaub
  • Claus W. Heizmann
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-1533-6_47


Definition of the Subject

Calcium is involved in almost every cellular activity. As a second messenger it is a critical component of the signaling network. It, furthermore, links mitochondrial energy production by oxidative phosphorylation to the actual energy demand. As complex animals left the oceanic calcium-rich environment to adopt terrestrial life they carried with them a huge calcium reservoir in their bones that guarantees the supply of the hundred times smaller amount of calcium vital for cell survival by maintaining calcium homeostasis. In contrast, too much calcium in the cell under pathologic condition or physical cell lesion presents a death signal (cardiac infarction, brain stroke). The human genome contains over 200 genes coding for calcium binding proteins (primarily EF-hand proteins). Their functions and relations to disease are...

This is a preview of subscription content, log in to check access.


  1. Alexander B et al (2010) Reversal of depressed behaviors in mice by p11 gene therapy in the nucleus accumbens. Sci Transl Med 2:54ra76CrossRefPubMedGoogle Scholar
  2. Berridge MJ (2005) Unlocking the secrets of cell signalling. Annu Rev Physiol 67:1–21CrossRefPubMedGoogle Scholar
  3. Bradshaw RA, Dennis EA (2009) Handbook of cell signaling, 2nd edn. Academic, OxfordGoogle Scholar
  4. Brunger AT, Jin R, Breidenbach MA (2008) Highly specific interactions between botulinum neurotoxins and synaptic vesicle proteins. Cell Mol Life Sci 65:2296–2306CrossRefPubMedGoogle Scholar
  5. Camby I et al (1999) Supratentorial pilocytic astrocytomas, astrocytomas, anaplastic expression of S100 proteins. Brain Pathol 9:1–19CrossRefPubMedGoogle Scholar
  6. Carafoli E, Brini M (2008) Calcium Signalling and Disease (Subcell Biochem, vol 45. Springer, Berlin)Google Scholar
  7. Castagnola P et al (2011) The surprising composition of the salivary proteome of preterm human newborn. Mol Cell Proteomics 10(1):M110.003467CrossRefPubMedGoogle Scholar
  8. Davis J, Westfall MV, Townsend D et al (2008) Designing heart performance by gene transfer. Physiol Rev 88:1567–1651CrossRefPubMedGoogle Scholar
  9. Donato R, Heizmann CW (2010) S100B protein in the nervous system and cardiovasc. Apparatus in normal and pathological conditions. Cardiovasc Psych Neurol 2010:929712Google Scholar
  10. Dutting S et al (2011) Fraternal twins: Swiprosin-1/EFhd2 and Swiprosin-2/EFhd1, two homologous EF-hand containing calcium binding adaptor proteins with distinct functions. Cell Commun Signal 9:2CrossRefPubMedGoogle Scholar
  11. Emmer BT et al (2010) Calflagin inhibition prolongs host survival and suppresses parasitemia in trypanosoma brucei infection. Eukaryot Cell 9:934–942CrossRefPubMedGoogle Scholar
  12. Eriksson S et al (2005) Negative interference in cardiac troponin I immunoassays by circulating troponin autoantibodies. Clin Chem 51:839–847CrossRefPubMedGoogle Scholar
  13. Fraga H et al (2010) FH8 – a small EF-hand protein from Fasciola hepatica. FEBS J 277:5072–5085CrossRefPubMedGoogle Scholar
  14. Haiech J, Heizmann CW, Krebs J (eds) Biochim Biophys Acta Mol Cell Res (Special Issue) vol. 1793 (2009) and vol. 1813 (2011)Google Scholar
  15. Heineke J et al (2010) CIB1 is a regulator of pathological cardiac hypertrophy. Nat Med 16:872–879CrossRefPubMedGoogle Scholar
  16. Heizmann CW, Braun K (1995) Calcium Regulation by Calcium-Binding Proteins in Neurodegenerative Disorders (Neurosci Intelligence Unit). Springer/Landes Company, Heidelberg/AustinCrossRefGoogle Scholar
  17. Heizmann CW, Fritz G, Schäfer BW (2002) S100 proteins: structure, functions and pathology. Front Biosci 7:d1356–d1368CrossRefPubMedGoogle Scholar
  18. Hofmann Bowman MA et al (2010) S100A12 mediates aortic wall remodeling and aortic aneurysm. Circ Res 106:145–154CrossRefPubMedGoogle Scholar
  19. Ismail TM et al (2010) Self-association of calcium-binding protein S100A4 and metastasis. J Biol Chem 285:914–922CrossRefPubMedGoogle Scholar
  20. Krebs J, Michalak M (eds) (2007) Calcium: a Matter of Life or Death (New Comprehensive Biochemistry, vol 41. Elsevier, AmsterdamGoogle Scholar
  21. Labugger R et al (2000) Extensive troponin I and T modification detected in serum from patients with acute myocardial infarction. Circulation 102:1221–1226CrossRefPubMedGoogle Scholar
  22. Leclerc E, Heizmann CW (2011) The importance of Ca2+/Zn2+ signaling S100 proteins and RAGE in translational medicine. Front Biosci (Schol Ed) 3:1232–1262CrossRefGoogle Scholar
  23. Leclerc E et al (2009) Crosstalk between calcium, amyloid beta and the receptor for advanced glycation endproducts in Alzheimer’s disease. Rev Neurosci 20:95–110PubMedGoogle Scholar
  24. Loser K et al (2010) The toll-like receptor 4 ligands Mrp8 and Mrp14 are crucial in the development of autoreactive CD8+ T cells. Nat Med 16:713–718CrossRefPubMedGoogle Scholar
  25. Magler I et al (2010) Molecular metamorphosis in polcalcin allergens by EF-hand rearrangements and domain swapping. FEBS J 277:2598–2619CrossRefPubMedGoogle Scholar
  26. Meydyouf H, Ghysdael J (2008) The calcineurin/NFAT signaling pathway: a novel therapeutic target in leukemia and solid tumors. Cell Cycle 7:297–303CrossRefGoogle Scholar
  27. Mikhaylova M et al (2006) Neuronal Ca2+ signaling in the brain via caldendrin and calneurons. Biochim Biophys Acta 1763:1229–1237CrossRefPubMedGoogle Scholar
  28. Mikoshiba K (ed) (2009) Handbook of Neurochemistry and Molecular Neurobiology. Neural Signaling Mechanisms, 3rd edn. Springer, BerlinGoogle Scholar
  29. Nakayama S, Kawasaki H, Kretsinger RH (2000) Evolution of EF-hand proteins. In: Carafoli E, Krebs J (eds) Calcium Homeostasis, Topics in Biological Inorganic Chemistry. Springer, Berlin, pp 29–58CrossRefGoogle Scholar
  30. Pelc K et al (2002) Calbindin-D28k: a marker of recurrence for medulloblastomas. Cancer 95:410–419CrossRefPubMedGoogle Scholar
  31. Petri ET et al (2010) Structure of the EF-hand domain of polycystin-2 suggests a mechanism for Ca2+-dependent regulation of polycystin-2 channel activity. Proc Natl Acad Sci 107:9176–9181CrossRefPubMedGoogle Scholar
  32. Pinto JR et al (2009) A functional and structural study of Troponin C mutations related to hypertrophic cardiomyopathy. J Biol Chem 284:19090–19100. doi:10.1074/jbc.M109.007021CrossRefPubMedGoogle Scholar
  33. Raiko I et al (2010) Development of an enzyme-linked immunosorbent assay for the detection of human calretinin in plasma and serum of mesothelioma patients. BMC Cancer 10:242CrossRefPubMedGoogle Scholar
  34. Rohde D, Brinks H, Ritterhoff J et al (2011) S100A1 gene therapy for heart failure: a novel strategy on the verge of clinical trials. J Mol Cell Cardiol 50:777–784Google Scholar
  35. Rogers H (1989) Immunoreactivity for calretinin and other calcium binding proteins in cerebellum. Neuroscience 31:711–721CrossRefPubMedGoogle Scholar
  36. Sack U, Stein U (2009) Wnt up your mind—intervention strategies for S100A4-induced metastasis in colon cancer. Gen Physiol Biophys 28:F55–F64PubMedGoogle Scholar
  37. Schaub MC, Heizmann CW (2008) Calcium, troponin, calmodulin, S100 proteins: from myocardial basics to new therapeutic strategies. Biochem Biophys Res Commun 369:247–264CrossRefPubMedGoogle Scholar
  38. Schaub MC, Hefti MA, Zaugg M (2006) Integration of calcium with the signaling network in cardiac myocytes. J Mol Cell Cardiol 41:183–214CrossRefPubMedGoogle Scholar
  39. Shimuzu H et al (2009) Nesfatin-1: an overview and future clinical application. Endocr J 56:537–543CrossRefGoogle Scholar
  40. Sturchler E et al (2008) Site-specific blockade of RAGE-Vd prevents amyloid-β oligomer neurotoxicity. J Neurosci 28:5149–5158. doi:10.1523/JNEUROSCI.4878-07.2008CrossRefPubMedGoogle Scholar
  41. Swoboda I et al (2007) A recombinant hypoallergenic parvalbumin mutant for immunotherapy of IgE-mediated fish allergy. J Immunol 178:6290–6296PubMedGoogle Scholar
  42. Trinchese F et al (2008) Inhibition of calpains improves memory and synaptic transmission in a mouse model of Alzheimer disease. J Clin Invest 118:2796–2807CrossRefPubMedGoogle Scholar
  43. White C et al (2006) CIB1, a ubiquitously expressed Ca2+-binding protein ligand of the InsP3 receptor Ca2+ release channel. J Biol Chem 281:20825–20833CrossRefPubMedGoogle Scholar
  44. Williams RJP, Frausto da Silva JJR (2006) The chemistry of evolution. The development of our ecosystem. Elsevier, AmsterdamGoogle Scholar
  45. Wolf R et al (2010) Gene from a psoriasis susceptibility locus primes the skin for inflammation. Sci Trans Med 2:61ra90CrossRefGoogle Scholar
  46. Zatz M, Starling A (2005) Calpains and disease. N Engl J Med 352:2413–2423CrossRefPubMedGoogle Scholar
  47. Zaugg M, Schaub MC (2003) Signaling and cellular mechanisms in cardiac protection by ischemic and pharmacological preconditioning. J Muscle Res Cell Motil 24:219–249CrossRefPubMedGoogle Scholar
  48. Zhou Y et al (2009) Viral calciomics: interplays between Ca2+ and virus. Cell Calcium 46:1–17CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of Pharmacology and ToxicologyUniversity of ZurichZurichSwitzerland
  2. 2.Department of Pediatrics, Division of Clinical ChemistryUniversity of ZurichZurichSwitzerland