Skip to main content

Silicon-Mediated Pathogen Resistance in Plants

  • Reference work entry
Encyclopedia of Metalloproteins
  • 132 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bélanger RR, Benhamou N, Menzies JG (2003) Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f.sp. tritici). Phytopathology 93:402–412

    Article  PubMed  Google Scholar 

  • Bowen P, Menzies J, Ehret D, Samuels L, Glass ADM (1992) Soluble silicon sprays inhibit powdery mildew development on grape leaves. J Am Soc Hortic Sci 117:906–912

    CAS  Google Scholar 

  • Brunings AM, Datnoff LE, Ma JF, Mitani N, Nagamura Y, Rathinasabapathi B, Kirst M (2009) Differential gene expression of rice in response to silicon and rice blast fungus Magnaporthe oryzae. Ann Appl Biol 155:1–10

    Article  CAS  Google Scholar 

  • Cai KZ, Gao D, Luo SM, Zeng RS, Yang JY, Zhu XY (2008) Physiological and cytological mechanisms of silicon induced resistance in rice against blast disease. Physiol Plant 134:324–333

    Article  CAS  PubMed  Google Scholar 

  • Cai KZ, Gao D, Chen JN, Luo SM (2009) Probing the mechanisms of silicon-mediated pathogen resistance. Plant Sig Behav 4:1–3

    Article  CAS  Google Scholar 

  • Carver TLW, Zeyen RJ, Ahlstrand GG (1987) The relationship between insoluble silicon and success or failure of attempted primary penetration by powdery mildew (Erysiphe graminis) germlings on barley. Physiol Mol Plant Pathol 31:133–148

    Article  Google Scholar 

  • Chérif M, Benhamou N, Menzies JG, Bélanger RR (1992) Silicon induced resistance in cucumber plants against Pythium ultimum. Physiol Mol Plant Pathol 41:411–425

    Article  Google Scholar 

  • Chérif M, Asselin A, Bélanger RR (1994) Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopathology 84:236–242

    Article  Google Scholar 

  • Currie HA, Perry CC (2007) Silica in plants: biological, biochemical and chemical Studies. Ann Bot 100:1383–1389

    Article  CAS  PubMed  Google Scholar 

  • Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci USA 91:11–17

    Article  CAS  PubMed  Google Scholar 

  • Fauteux F, Rémus-Borel W, Menzies JG, Bélanger RR (2005) Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol Lett 249:1–6

    Article  CAS  PubMed  Google Scholar 

  • Fauteux F, Chain F, Belzile F, Menzies JG, Bélanger RR (2006) The protective role of silicon in the Arabidopsis-powdery mildew pathosystem. Proc Natl Acad Sci USA 103:17554–17559

    Article  CAS  PubMed  Google Scholar 

  • Fawe A, Abou-Zaid M, Menzies JG, Bélanger RR (1998) Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. Phytopathology 88:396–401

    Article  CAS  PubMed  Google Scholar 

  • Fawe A, Menzies JG, Chérif M, Bélanger RR (2001) Silicon and disease resistance in dicotyledons. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Elsevier Science, New York, pp 159–169

    Chapter  Google Scholar 

  • Ghareeb H, Bozsó Z, Ott PG, Repenningc C, Stahlc F, Wydra K (2011a) Transcriptome of silicon-induced resistance against Ralstonia solanacearum in the silicon non-accumulator tomato implicates priming effect. Physiol Mol Plant Pathol 75:83–89

    Article  CAS  Google Scholar 

  • Ghareeb H, Bozsób Z, Ott PG, Wydra K (2011b) Silicon and Ralstonia solanacearum modulate expression stability of housekeeping genes in tomato. Physiol Mol Plant Pathol 75:176–179

    Article  CAS  Google Scholar 

  • Hayasaka T, Fujii H, Ishiguro K (2008) The role of silicon in preventing appressorial penetration by the rice blast fungus. Phytopathology 98:1038–1044

    Article  CAS  PubMed  Google Scholar 

  • Heine G, Tikum G, Horst WJ (2007) The effect of silicon on the infection by and spread of Pythium aphanidermatum in single roots of tomato and bitter gourd. J Exp Bot 58:569–577

    Article  CAS  PubMed  Google Scholar 

  • Inanaga S, Okasaka A, Tanaka S (1995) Does silicon exist in association with organic compounds in rice plant? Jpn J Soil Sci Plant Nutr 11:111–117

    Article  Google Scholar 

  • Kauss H, Seehaus K, Franke R, Gilbert S, Dietrich RA, Kröger N (2003) Silica deposition by a strongly cationic proline-rich protein from systemically resistant cucumber plants. Plant J 33:87–95

    Article  CAS  PubMed  Google Scholar 

  • Kim SG, Kim KW, Park EW, Choi D (2002) Silicon-induced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast. Phytopathology 92:1095–1103

    Article  PubMed  Google Scholar 

  • Kwon SH, Oh JH, Song HS (1974) Studies on the relationship between chemical contents of rice plants and resistance to rice blast disease. Kor J Plant Prot 13:33–39

    CAS  Google Scholar 

  • Liang YC, Sun WC, Si J, Römheld V (2005) Effects of foliar- and root-applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Plant Pathol 54:678–685

    Article  CAS  Google Scholar 

  • Liang Y, Sun W, Zhu YG, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Poll 147:422–428

    Article  CAS  Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N (2008) Functions and transport of silicon in plants. Cell Mol Life Sci 65:3049–3057

    Article  CAS  PubMed  Google Scholar 

  • Rémus-Borel W, Menzies JG, Bélanger RR (2005) Silicon induces antifungal compounds in powdery mildew-infected wheat. Physiol Mol Plant Pathol 66:108–115

    Article  CAS  Google Scholar 

  • Rodrigues FÁ, Benhamou N, Datnoff LE, Jones JB, Bélanger RR (2003) Ultrastructural and cytochemical aspects of silicon mediated rice blast resistance. Phytopathology 93:535–546

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues FÁ, McNally DJ, Datnoff LE, Jones JB, Labbé C, Benhamou N, Menzies JG, Bélanger RR (2004) Silicon enhances the accumulation of diterpenoid phytoalexins in rice: a potential mechanism for blast resistance. Phytopathology 94:177–183

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues FÁ, Jurick WM, Datnoff LE, Jones JB, Rollins JA (2005) Silicon influences cytological and molecular events in compatible and incompatible rice-Magnaporthe grisea interactions. Physiol Mol Plant Pathol 66:144–459

    Article  CAS  Google Scholar 

  • Samuels AL, Glass ADM, Ehret DL, Menzies JG (1991) Mobility and deposition of silicon in cucumber plants. Plant Cell Environ 14:485–492

    Article  Google Scholar 

  • Seebold KW, Kucharek TA, Datnoff LE, Correa-Victoria FJ, Marchetti MA (2001) The influence of silicon on components of resistance to blast in susceptible, partially resistant and resistant cultivars of rice. Phytopathology 91:63–69

    Article  CAS  PubMed  Google Scholar 

  • Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Annu Rev Phytopathol 43:83–116

    Article  CAS  PubMed  Google Scholar 

  • Watanabe S, Shimoi E, Ohkama N, Hayashi H, Yoneyama T, Yazaki J, Fujii F, Shinbo K, Yamamoto K, Sakata K, Sasaki T, Kishimoto N, Kikuchi S, Fujiwara T (2004) Identification of several rice genes regulated by Si nutrition. Soil Sci Plant Nutr 50:1273–1276

    Article  CAS  Google Scholar 

  • Yang YF, Liang YC, Lou YS, Sun WC (2003) Influences of silicon on peroxidase, superoxide dismutase activity and lignin content in leaves of wheat Tritium aestivum L. and its relation to resistance to powdery mildew. Sci Agric Sin 36:813–817

    CAS  Google Scholar 

  • Zargar SM, Nazir M, Agrawal GK, Kim DW, Rakwal R (2010) Silicon in plant tolerance against environmental stressors: towards crop improvement using omics approaches. Curr Proteomics 7:135–143

    Article  CAS  Google Scholar 

  • Zhang GL, Dai QG, Zhang HC (2006) Silicon application enhances resistance to sheath blight (Rhizoctonia solani) in rice. J Plant Physiol Mol Biol 32:600–606

    CAS  Google Scholar 

Download references

Acknowledgments

The study is financially supported by grants from the National Key Basic Research Funds of China (2011CB100400), Natural Science Foundation of China (31070396), and Doctoral Fund of Ministry of Education of China (20094404110007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunzheng Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Cai, K. (2013). Silicon-Mediated Pathogen Resistance in Plants. In: Kretsinger, R.H., Uversky, V.N., Permyakov, E.A. (eds) Encyclopedia of Metalloproteins. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1533-6_454

Download citation

Publish with us

Policies and ethics