Encyclopedia of Metalloproteins

2013 Edition
| Editors: Robert H. Kretsinger, Vladimir N. Uversky, Eugene A. Permyakov

Calcium, Neuronal Sensor Proteins

Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-1533-6_45


 CaM;  DREAM;  Frq1;  GCAP;  KChIP;  NCS-1


Calmodulin, Downstream response element antagonist modulator, Yeast frequenin, Guanylate cyclase activator protein, Potassium channel–interacting protein, Neuronal calcium sensor protein-1.


Intracellular calcium (Ca 2+) regulates a variety of neuronal signal transduction processes in the brain and retina. The effects of changes in neuronal Ca 2+ are mediated primarily by an emerging class of neuronal calcium sensor (NCS) proteins (Weiss et al. 2010) that belong to the EF-hand superfamily. The human genome encodes 14 members of the NCS family. The amino acid sequences of NCS proteins are highly conserved from yeast to humans (Fig.  1). Recoverin, the first NCS protein to be discovered (Dizhoor et al. 1991), and guanylate cyclase–activating proteins (GCAPs) (Dizhoor et al. 1994; Palczewski et al. 1994) are expressed exclusively in the retina where they serve as Ca 2+sensors in vision. Other NCS proteins are...
This is a preview of subscription content, log in to check access.



This work was supported by grants to J.B.A. from the NIH.


  1. Ames JB, Ishima R, Tanaka T, Gordon JI, Stryer L, Ikura M (1997) Molecular mechanics of calcium-myristoyl switches. Nature 389:198–202CrossRefPubMedGoogle Scholar
  2. Ames JB, Hamasaki N, Molchanova T (2002) Structure and calcium-binding studies of a recoverin mutant (E85Q) in an allosteric intermediate state. Biochemistry 41:5776–5787CrossRefPubMedGoogle Scholar
  3. Ames JB, Levay K, Wingard JN, Lusin JD, Slepak VZ (2006) Structural basis for calcium-induced inhibition of rhodopsin kinase by recoverin. J Biol Chem 281:37237–37245CrossRefPubMedGoogle Scholar
  4. An WF, Bowlby MR, Betty M, Cao J, Ling HP, Mendoza G, Hinson JW, Mattsson KI, Strassle BW, Trimmer JS, Rhodes KJ (2000) Modulation of A-type potassium channels by a family of calcium sensors. Nature 403:553–556CrossRefPubMedGoogle Scholar
  5. Bourne Y, Dannenberg J, Pollmann VV, Marchot P, Pongs O (2001) Immunocytochemical localization and crystal structure of human frequenin (neuronal calcium sensor1). J Biol Chem 276:11949–11955CrossRefPubMedGoogle Scholar
  6. Braunewell KH, Klein-Szanto AJ (2009) Visinin-like proteins (VSNLs): interaction partners and emerging functions in signal transduction of a subfamily of neuronal Ca2+ -sensor proteins. Cell Tissue Res 335:301–316CrossRefPubMedGoogle Scholar
  7. Carrion AM, Link WA, Ledo F, Mellstrom B, Naranjo JR (1999) DREAM is a Ca2+ -regulated transcriptional repressor. Nature 398:80–84CrossRefPubMedGoogle Scholar
  8. Cheng HY, Pitcher GM, Laviolette SR, Whishaw IQ, Tong KI, Ikura M, Salter MW, Penninger JM (2002) DREAM is a critical transcriptional repressor for pain modulation. Cell 108:31–43CrossRefPubMedGoogle Scholar
  9. Dizhoor AM, Ray S, Kumar S, Niemi G, Spencer M, Rrolley D, Walsh KA, Philipov PP, Hurley JB, Stryer L (1991) Recoverin: a calcium sensitive activator of retinal rod guanylate cyclase. Science 251:915–918CrossRefPubMedGoogle Scholar
  10. Dizhoor AM, Lowe DG, Olsevskaya EV, Laura RP, Hurley JB (1994) The human photoreceptor membrane guanylyl cyclase, RetGC, is present in outer segments and is regulated by calcium and a soluble activator. Neuron 12:1345–1352CrossRefPubMedGoogle Scholar
  11. Flaherty KM, Zozulya S, Stryer L, McKay DB (1993) Three-dimensional structure of recoverin, a calcium sensor in vision. Cell 75:709–716CrossRefPubMedGoogle Scholar
  12. Hendricks KB, Wang BQ, Schnieders EA, Thorner J (1999) Yeast homologue of neuronal frequenin is a regulator of phosphatidylinositol-4-OH kinase. Nat Cell Biol 1:234–241CrossRefPubMedGoogle Scholar
  13. Hidaka H, Okazaki K (1993) Neurocalcin family: a novel calcium-binding protein abundant in bovine central nervous system. Neurosci Res 16:73–77CrossRefPubMedGoogle Scholar
  14. Kobayashi M, Takamatsu K, Saitoh S, Miura M, Noguchi T (1992) Molecular cloning of hippocalcin, a novel calcium-binding protein of the recoverin family exclusively expressed in hippocampus. Biochem Biophys Res Commun 189:511–517 (published erratum appears in Biochem Biophys Res Commun 1993 Oct 29;196(2):1017)CrossRefPubMedGoogle Scholar
  15. Lim S, Strahl T, Thorner J, Ames JB (2011) Structure of a Ca2+ – myristoyl switch protein that controls activation of a phosphatidylinositol 4-kinase in fission yeast. J Biol Chem 286:12565–12577CrossRefPubMedGoogle Scholar
  16. Palczewski K, Subbaraya I, Gorczyca WA, Helekar BS, Ruiz CC, Ohguro H, Huang J, Zhao X, Crabb JW, Johnson RS (1994) Molecular cloning and characterization of retinal photoreceptor guanylyl cyclase-activating protein. Neuron 13:395–404CrossRefPubMedGoogle Scholar
  17. Pongs O, Lindemeier J, Zhu XR, Theil T, Engelkamp D, Krah-Jentgens I, Lambrecht HG, Kock KW, Schwerner J, Rivosecchi R, Mallart A, Galceran J, Canal I, Barbas JA, Ferrus A (1993) Frequenin-a novel calcium-binding protein that modulates synaptic efficacy. Neuron 11:15–28CrossRefPubMedGoogle Scholar
  18. Stephen R, Bereta G, Golczak M, Palczewski K, Sousa MC (2007) Stabilizing function for myristoyl group revealed by the crystal structure of a neuronal calcium sensor, guanylate cyclase-activating protein 1. Structure 15:1392–1402CrossRefPubMedGoogle Scholar
  19. Strahl T, Huttner IG, Lusin JD, Osawa M, King D, Thorner J, Ames JB (2007) Structural insights into activation of phosphatidylinositol 4-kinase (Pik1) by yeast frequenin (Frq1). J Biol Chem 282:30949–30959CrossRefPubMedGoogle Scholar
  20. Valentine KG, Mesleh MF, Opella SJ, Ikura M, Ames JB (2003) Structure, topology, and dynamics of myristoylated recoverin bound to phospholipid bilayers. Biochemistry 42:6333–6340CrossRefPubMedGoogle Scholar
  21. Vijay-Kumar S, Kumar VD (1999) Crystal structure of recombinant bovine neurocalcin. Nat Struct Biol 6:80–88CrossRefPubMedGoogle Scholar
  22. Weiss JL, Hui H, Burgoyne RD (2010) Neuronal calcium sensor-1 regulation of calcium channels, secretion, and neuronal outgrowth. Cell Mol Neurobiol 30:1283–1292CrossRefPubMedGoogle Scholar
  23. Zhou W, Qian Y, Kunjilwar K, Pfaffinger PJ, Choe S (2004) Structural insights into the functional interaction of KChIP1 with Shal-type K(+) channels. Neuron 41:573–586CrossRefPubMedGoogle Scholar
  24. Zozulya S, Stryer L (1992) Calcium-myristoyl protein switch. Proc Natl Acad Sci USA 89:11569–11573CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CaliforniaDavisUSA