Encyclopedia of Metalloproteins

2013 Edition
| Editors: Robert H. Kretsinger, Vladimir N. Uversky, Eugene A. Permyakov

Aluminum and Phosphatidylinositol-Specific-Phospholipase C

  • Sandra Viviana VerstraetenEmail author
  • Patricia Isabel Oteiza
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-1533-6_433



Lipid bilayer: Spontaneous arrangement of polar lipids, such as phospholipids, when in contact with water-containing solutions. Given that phospholipids have in their structure a hydrophilic headgroup and two hydrophobic tails, they adopt a disposition of a flat two-layered sheet with the headgroups facing the aqueous milieu and the hydrophobic tails grouped toward the inside of the sheet, isolated from water (Scheme  1).
This is a preview of subscription content, log in to check access.


  1. Aloulou A, Rodriguez JA, Fernandez S, van Oosterhout D, Puccinelli D, Carrière F (2006) Exploring the specific features of interfacial enzymology based on lipase studies. Biochim Biophys Acta 1761:995–1013PubMedCrossRefGoogle Scholar
  2. Corry B, Hool L (2007) Calcium Channels. In: Chung SH, Andersen O, Krishnamurthy V (eds) Biological membrane ion channels: dynamics, structure, and applications. Springer, New YorkGoogle Scholar
  3. Martin RB (1986) The chemistry of aluminum as related to biology and medicine. Clin Chem 32:1797–1806PubMedGoogle Scholar
  4. Nostrandt AC, Shafer TJ, Mundy WR, Padilla S (1996) Inhibition of rat brain phosphatidylinositol-specific phospholipase C by aluminum: regional differences, interactions with aluminum salts, and mechanisms. Toxicol Appl Pharmacol 136:118–125PubMedCrossRefGoogle Scholar
  5. Rebecchi MJ, Pentyala SN (2000) Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev 80:1291–1335PubMedGoogle Scholar
  6. Shafer TJ, Mundy WR (1995) Effects of aluminum on neuronal signal transduction: mechanisms underlying disruption of phosphoinositide hydrolysis. Gen Pharmacol 26:889–895PubMedCrossRefGoogle Scholar
  7. Verstraeten SV, Oteiza PI (2000) Effects of Al3+ and related metals on membrane phase state and hydration: correlation with lipid oxidation. Arch Biochem Biophys 375:340–346PubMedCrossRefGoogle Scholar
  8. Verstraeten SV, Oteiza PI (2002) Al3+-mediated changes in membrane physical properties participate in the inhibition of polyphosphoinositide hydrolysis. Arch Biochem Biophys 408:263–271PubMedCrossRefGoogle Scholar
  9. Verstraeten SV, Nogueira LV, Schreier S, Oteiza PI (1997a) Effect of trivalent metal ions on phase separation and membrane lipid packing: role in lipid peroxidation. Arch Biochem Biophys 338:121–127PubMedCrossRefGoogle Scholar
  10. Verstraeten SV, Golub MS, Keen CL, Oteiza PI (1997b) Myelin is a preferential target of aluminum-mediated oxidative damage. Arch Biochem Biophys 344:289–294PubMedCrossRefGoogle Scholar
  11. Verstraeten SV, Keen CL, Golub MS, Oteiza PI (1998) Membrane composition can influence the rate of Al3+-mediated lipid oxidation: effect of galactolipids. Biochem J 333:833–838PubMedGoogle Scholar
  12. Verstraeten SV, Erlejman AG, Zago MP, Oteiza PI (2002) Aluminum affects membrane physical properties in human neuroblastoma (IMR-32) cells both before and after differentiation. Arch Biochem Biophys 399:167–173PubMedCrossRefGoogle Scholar
  13. Verstraeten SV, Villaverde MS, Oteiza PI (2003) Al3+-mediated changes on membrane fluidity affects the activity of PI-PLC but not of PLC. Chem Phys Lipids 122:159–163PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sandra Viviana Verstraeten
    • 1
    Email author
  • Patricia Isabel Oteiza
    • 2
  1. 1.Department of Biological Chemistry, IQUIFIB (UBA-CONICET), School of Pharmacy and BiochemistryUniversity of Buenos Aires, ArgentinaBuenos AiresArgentina
  2. 2.Departments of Nutrition and Environmental ToxicologyUniversity of California, DavisDavisUSA