Skip to main content

Copper-Binding Proteins

  • Reference work entry
Encyclopedia of Metalloproteins
  • 175 Accesses

Synonyms

Copper metalloproteins; Cuproproteins

Definition

Copper-binding proteins specifically incorporate the metal into their structure for catalytic and structural purposes. Noncatalytic, structural sites are found in copper sensing proteins involved in the regulation of copper metabolism and in copper sequestering peptides and proteins involved in protection against copper intoxication. The sensing proteins regulate all aspects of copper metabolism, including the uptake, intracellular use, detoxification, and export of copper. Commonly, the regulation is affected at the transcriptional level, and the binding of copper by the protein is the switch that modulates the sensor protein’s structure and function. The binding in these sites takes place through cysteinyl thiolates.

Noncatalytic Roles of Copper in Proteins

In noncatalytic proteins, copper serves a structural-regulatory role, a role mediated by its specific binding to sensory proteins where a change is elicited in the activity...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahte P, Palumaa P, Tamm T (2009) Stability and conformation of polycopper-thiolate clusters studied by density functional approach. J Phys Chem A 113:9157–9164

    Article  CAS  PubMed  Google Scholar 

  • Banci L, Bertini I, Ciofi-Baffoni S, Del Conte R, Gonnelli L (2003) Understanding copper trafficking in bacteria: interaction between the copper transport protein CopZ and the N-terminal domain of the copper ATPase CopA from Bacillus subtilis. Biochemistry 42:1939–1949

    Article  CAS  PubMed  Google Scholar 

  • Brown KR, Keller GL, Pickering IJ, Harris HH, George GN, Winge DR (2002) Structures of the cuprous-thiolate clusters of the Mac1 and Ace1 transcriptional activators. Biochemistry 41:6469–6476

    Article  CAS  PubMed  Google Scholar 

  • Cantini F, Banci L, Solioz M (2009) The copper-responsive repressor CopR of Lactococcus lactis is a ‘winged helix’ protein. Biochem J 417:493–499

    Article  CAS  PubMed  Google Scholar 

  • Cobine P, Wickramasinghe WA, Harrison MD, Weber T, Solioz M, Dameron CT (1999) The Enterococcus hirae copper chaperone CopZ delivers copper(I) to the CopY repressor. FEBS Lett 445:27–30

    Article  CAS  PubMed  Google Scholar 

  • Cobine PA, George GN, Jones CE, Wickramasinghe WA, Solioz M, Dameron CT (2002a) Copper transfer from the Cu(I) chaperone, CopZ, to the repressor Zn(II)CopY: metal coordination environments and protein interactions. Biochemistry 41:5822–5829

    Article  CAS  PubMed  Google Scholar 

  • Cobine PA, Jones CE, Dameron CT (2002b) Role for zinc(II) in the copper(I) regulated protein CopY. J Inorg Biochem 88:192–196

    Article  CAS  PubMed  Google Scholar 

  • Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced Inorganic Chemistry. Wiley, New York

    Google Scholar 

  • Coyle P, Philcox JC, Carey LC, Rofe AM (2002) Metallothionein: the multipurpose protein. Cell Mol Life Sci 59:627–647

    Article  CAS  PubMed  Google Scholar 

  • Dameron CT, Winge DR, George GN, Sansone M, Hu S, Hamer D (1991) A copper-thiolate polynuclear cluster in the ACE1 transcription factor. Proc Natl Acad Sci USA 88:6127–6131

    Article  CAS  PubMed  Google Scholar 

  • Dameron CT, George GN, Arnold P, Santhanagopalan V, Winge DR (1993) Distinct metal binding configurations in ACE1. Biochemistry 32:7294–7301

    Article  CAS  PubMed  Google Scholar 

  • Dobi A, Dameron CT, Hu S, Hamer D, Winge DR (1995) Distinct regions of Cu(I)-ACE1 contact two spatially resolved DNA major groove sites. J Biol Chem 270:10171–10176

    Article  CAS  PubMed  Google Scholar 

  • Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1:529–539

    Article  CAS  PubMed  Google Scholar 

  • George GN, Winge D, Stout CD, Cramer SP (1986) X-ray absorption studies of the copper-beta domain of rat liver metallothionein. J Inorg Biochem 27:213–220

    Article  CAS  PubMed  Google Scholar 

  • Green AR, Presta A, Gasyna Z, Stillman MJ (1994) Luminescent probe of copper-thiolate cluster formation within mammalian metallothionein. Inorg Chem 33:4159–4168

    Article  CAS  Google Scholar 

  • Gregory P, Lewis R, Curnock S, Dyke K (1997) Studies of the repressor (Bla1) of beta-lactamase synthesis in Staphylococcus aureus. Mol Microbiol 24:1025–1037

    Article  CAS  PubMed  Google Scholar 

  • Lu ZH, Solioz M (2001) Copper-induced proteolysis of the CopZ copper chaperone of Enterococcus hirae. J Biol Chem 276:47822–47827

    CAS  PubMed  Google Scholar 

  • Lu ZH, Cobine P, Dameron CT, Solioz M (1999) How cells handle copper: a view from microbes. J Trace Elem Exp Med 12:347–360

    Article  CAS  Google Scholar 

  • Lu ZH, Dameron CT, Solioz M (2003) The Enterococcus hirae paradigm of copper homeostasis: copper chaperone turnover, interactions, and transactions. Biometals 16:137–143

    Article  CAS  PubMed  Google Scholar 

  • Pazehoski KO, Collins TC, Boyle RJ, Jensen-Seaman MI, Dameron CT (2008) Stalking metal-linked dimers. J Inorg Biochem 102:522–531

    Article  CAS  PubMed  Google Scholar 

  • Pazehoski KO, Cobine PA, Winzor DJ, Dameron CT (2011) Evidence for involvement of the C-terminal domain in the dimerization of the CopY repressor protein from Enterococcus hirae. Biochem Biophys Res Commun 406:183–187

    Article  CAS  PubMed  Google Scholar 

  • Pickering IJ, George GN, Dameron CT, Kurz B, Winge DR, Dance IG (1993) X-ray absorption spectroscopy of cuprous-thiolate clusters in proteins and model systems. J Am Chem Soc 115:9498–9505

    Article  CAS  Google Scholar 

  • Portmann R, Poulsen KR, Wimmer R, Solioz M (2006) CopY-like copper inducible repressors are putative ‘winged helix’ proteins. Biometals 19:61–70

    Article  CAS  PubMed  Google Scholar 

  • Rubino JT, Riggs-Gelasco P, Franz KJ (2010) Methionine motifs of copper transport proteins provide general and flexible thioether-only binding sites for Cu(I) and Ag(I). J Biol Inorg Chem 15:1033–1049

    Article  CAS  PubMed  Google Scholar 

  • Samson SL, Gedamu L (1998) Molecular analyses of metallothionein gene regulation. Prog Nucleic Acid Res Mol Biol 59:257–288

    Article  CAS  PubMed  Google Scholar 

  • Sharp PA (2003) Ctr1 and its role in body copper homeostasis. Int J Biochem Cell Biol 35:288–291

    Article  CAS  PubMed  Google Scholar 

  • Sivasankar C, Sadhukhan N, Bera JK, Samuelson AG (2007) Is copper(i) hard or soft? A density functional study of mixed ligand complexes. New J Chem 31:385–393

    Article  CAS  Google Scholar 

  • Solioz M (2002) Role of proteolysis in copper homoeostasis. Biochem Soc Trans 30:688–691

    Article  CAS  PubMed  Google Scholar 

  • Solioz M, Stoyanov JV (2003) Copper homeostasis in Enterococcus hirae. FEMS Microbiol Rev 27:183–195

    Article  CAS  PubMed  Google Scholar 

  • Solioz M, Vulpe C (1996) CPx-type ATPase – a class of P-type ATPases that pump heavy metals. Trends Biol Sci 21:237–241

    CAS  Google Scholar 

  • Strausak D, Solioz M (1997) CopY is a copper-inducible repressor of the Enterococcus hirae copper ATPases. J Biol Chem 272:8932–8936

    Article  CAS  PubMed  Google Scholar 

  • Thorvaldsen JL, Sewell AK, McCowen CL, Winge DR (1993) Regulation of metallothionein genes by the ACE1 and AMT1 transcription factors. J Biol Chem 268:12512–12518

    CAS  PubMed  Google Scholar 

  • Winge DR, Dameron CT, George GN (1994) The metallothionein structural motif in gene expression. Adv Inorg Biochem 10:1–48

    CAS  PubMed  Google Scholar 

  • Wunderli-Ye H, Solioz M (1999) Copper homeostasis in Enterococcus hirae. Adv Exp Med Biol 448:255–264

    Article  CAS  PubMed  Google Scholar 

  • Xiao Z, Loughlin F, George GN, Howlett GJ, Wedd AG (2004) C-terminal domain of the membrane copper transporter Ctr1 from Saccharomyces cerevisiae binds four Cu(I) ions as a cuprous-thiolate polynuclear cluster: sub-femtomolar Cu(I) affinity of three proteins involved in copper trafficking. J Am Chem Soc 126:3081–3090

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Pickering IJ, Winge DR, George GN (2008) X-ray absorption spectroscopy of cuprous-thiolate clusters in Saccharomyces cerevisiae metallothionein. Chem Biodivers 5:2042–2049

    Article  CAS  PubMed  Google Scholar 

  • Zhou P, Thiele DJ (1993) Copper and gene regulation in yeast. Biofactors 4:105–115

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles T. Dameron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Dameron, C.T. (2013). Copper-Binding Proteins. In: Kretsinger, R.H., Uversky, V.N., Permyakov, E.A. (eds) Encyclopedia of Metalloproteins. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1533-6_126

Download citation

Publish with us

Policies and ethics