Reference work entry

Normal bone mineralization requires adequate supplies of calcium and phosphate and normal vitamin D metabolism. Defective supply or function of any of these factors can cause rickets and osteomalacia.

Synonyms and Related Disorders

Familial hypophosphatemic rickets; Nutritional rickets; Vitamin-deficiency rickets; Vitamin D-dependent rickets

Genetics/Basic Defects

  1. 1.
    1. a.
      Younger than 6 months of age
      1. i.


      2. ii.


      3. iii.

        Primary hyperparathyroidism

      4. iv.
        Maternal factors
        1. a)

          Vitamin D deficiency

        2. b)

          Poorly controlled hyperparathyroidism

        3. c)

          Poorly controlled renal insufficiency

    2. b.
      Older than 6 months of age
      1. i.
        Nutritional rickets in children
        1. a)

          Inadequate levels (deficiency) of vitamin D due to either inadequate oral intake or insufficient exposure to sunlight

        2. b)

          With resultant decreased calcium absorption in the small intestine

        3. c)

          Thereby decreasing the available calcium for epiphyseal cartilage and skeletal mineralization

        4. d)



Entire Code Region Hypophosphatemic Rickets Nutritional Rickets Deficiency Rickets Autosomal Dominant Hypophosphatemic Rickets 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Al-Khenaizan, S., & Vitale, P. (2003). Vitamin D-dependent rickets type II with alopecia: Two case reports and review of the literature. International Journal of Dermatology, 42, 682–685.CrossRefGoogle Scholar
  2. Begum, R., Continho, M. L., & Dormandy, T. L. (1968). Maternal malabsorption presenting congenital rickets. Lancet, 1, 1048–1052.PubMedCrossRefGoogle Scholar
  3. Bishop, N. (1999). Rickets today-children still need milk and sunshine. The New England Journal of Medicine, 341, 602–603.PubMedCrossRefGoogle Scholar
  4. Carpenter, T. O. (1997). New perspectives on the biology and treatment of x-linked hypophosphatemic rickets. Pediatric Clinics of North America, 44, 443–466.PubMedCrossRefGoogle Scholar
  5. Chandran, M., Chng, C. L., Zhao, Y., et al. (2010). Novel PHEX gene mutation associated with X linked hypophosphatemic rickets. Nephron. Physiology, 116, 17–21.CrossRefGoogle Scholar
  6. Currarino, G. D., Neuhauser, E. B. D., Reyersbach, G. C., et al. (1957). Hypophosphatasia. American Journal of Roentgenology, 78, 392–419.Google Scholar
  7. DeLucia, M. C., Mitnick, M. E., & Carpenter, T. O. (2003). Nutritional rickets with normal circulating 25-hydroxyvitamin D: A call for reexamining the role of dietary calcium intake in North American infants. Journal of Clinical Endocrinology and Metabolism, 88, 3539–3545.PubMedCrossRefGoogle Scholar
  8. DiMeglio, L. A., & Econs, M. J. (2001). Hypophosphatemic rickets. Reviews in Endocrine & Metabolic Disorders, 2, 165–173.CrossRefGoogle Scholar
  9. DiMeglio, L. A., White, K. E., & Econs, M. J. (2000). Disorders of phosphate metabolism. Journal of Clinical Endocrinology and Metabolism, 29, 591–609.CrossRefGoogle Scholar
  10. Econs, M. J., & Francis, F. (1997). Positional cloning of the PEX gene: New insights into the pathophysiology of X-linked hypophosphatemic rickets. American Journal of Physiology, 273, F489–F498.PubMedGoogle Scholar
  11. Farrow, E. G., Davis, S. I., Ward, L. M., et al. (2009). Molecular analysis of DMP1 mutants causing autosomal recessive hypophosphatemic rickets. Bone, 44, 287–294.PubMedCrossRefGoogle Scholar
  12. Felman, K. W., Marcuse, E. K., & Springer, D. A. (1990). Nutritional rickets. American Family Physician, 42, 1311–1318.Google Scholar
  13. Fucentese, S. F., Neuhaus, T. J., Ramseier, L. E., et al. (2008). Metabolic and orthopedic management of X-linked vitamin D-resistant hypophosphatemic rickets. Journal of Childrens Orthopaedics, 2, 285–291.CrossRefGoogle Scholar
  14. Gartner, L. M., & Greer, F. R. (2003). Prevention of rickets and vitamin D deficiency: New guidelines for vitamin D intake. Pediatrics, 111, 908–910.PubMedCrossRefGoogle Scholar
  15. Glorieux, F. H., Scriver, C. R., Reade, T. M., et al. (1972). Use of phosphate and vitamin D to prevent dwarfism and rickets in X-linked hypophosphatemia. The New England Journal of Medicine, 287, 481–487.PubMedCrossRefGoogle Scholar
  16. Greer, F. R. (1994). Osteopenia of prematurity. Annual Review of Nutrition, 14, 169–185.PubMedCrossRefGoogle Scholar
  17. Institute of Medicine, Food and Nutrition Board, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. (1997). Vitamin D. In Institute of Medicine (Ed.), Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride (pp. 250–287). Washington, DC: National Academy.Google Scholar
  18. Joiner, T. A., Foster, C., & Shope, T. (2000). The many faces of vitamin D deficiency rickets. Pediatrics in Review, 21, 296–302.PubMedCrossRefGoogle Scholar
  19. Kreiter, S. R., Schwartz, R. P., Kirkman, H. N., Jr., et al. (2000). Nutritional rickets in African American breast-fed infants. Journal of Pediatrics, 137, 153–157.PubMedCrossRefGoogle Scholar
  20. Kruse, K. (1995). Pathophysiology of calcium metabolism in children with vitamin D-deficiency rickets. Journal of Pediatrics, 126, 736–741.PubMedCrossRefGoogle Scholar
  21. Landing, B. H., & Kamoshita, S. (1970). Congenital hyperparathyroidism secondary to maternal hypoparathyroidism. Journal of Pediatrics, 77, 842–847.PubMedCrossRefGoogle Scholar
  22. Levin, T. L., States, L., Greig, A., et al. (1992). Maternal renal insufficiency: A cause of congenital rickets and secondary hyperparathyroidism. Pediatric Radiology, 22, 315–316.PubMedCrossRefGoogle Scholar
  23. Levy-Litan, V., Hershkovitz, E., Avizov, E., et al. (2010). Autosomal-recessive hypophosphatemic rickets is associated with an inactivation mutation in the ENPP1 gene. American Journal of Human Genetics, 86, 273–278.PubMedCrossRefGoogle Scholar
  24. Lorenz-Depiereux, B., Schnabel, D., Tiosano, D., et al. (2010). Loss-of function ENPP1 mutations cause both generalized arterial calcification of infancy and autosomal-recessive hypophosphatemic rickets. American Journal of Human Genetics, 86, 267–272.PubMedCrossRefGoogle Scholar
  25. Malloy, P. J., Pike, J. W., & Feldman, D. (1999). The vitamin D receptor and the syndrome of hereditary 1,25-dihydroxyvitamin D-resistant rickets. Endocrine Reviews, 20, 156–188.PubMedCrossRefGoogle Scholar
  26. Mancrieff, H., & Fadahunsi, T. (1974). Congenital rickets due to maternal vitamin D deficiency. Archives of Disease in Childhood, 49, 810–811.CrossRefGoogle Scholar
  27. Murthy, A. S. (2009). X-linked hypophosphatemic rickets and craniosynostosis. The Journal of Craniofacial Surgery, 20, 439–442.PubMedCrossRefGoogle Scholar
  28. Norman, M. E. (1982). Vitamin D in bone disease. Pediatric Clinics of North America, 229, 947–971.Google Scholar
  29. Pettifor, J. M. (2008). What’s new in hypophosphataemic rickets? European Journal of Pediatrics, 167, 493–499.PubMedCrossRefGoogle Scholar
  30. Pitt, M. J. (1981). Rachitic and osteomalacic syndromes. Radiologic Clinics of North America, 19, 581–599.PubMedGoogle Scholar
  31. Pitt, M. J. (1991). Rickets and osteomalacia are still around. Radiologic Clinics of North America, 29, 97–118.PubMedGoogle Scholar
  32. Russell, J. G., & Hill, L. F. (1974). True fetal rickets. British Journal of Radiology, 47, 732–734.PubMedCrossRefGoogle Scholar
  33. Schmitt, C. P., & Mehls, O. (2004). The enigma of hyperparathyroidism in hypophosphatemic rickets. Pediatric Nephrology, 19, 473–477.PubMedCrossRefGoogle Scholar
  34. Schneider, R. (1984). Radiologic methods of evaluating generalized osteopenia. Orthopedic Clinics of North America, 15, 631–651.PubMedGoogle Scholar
  35. Smith, R. (1972). The pathophysiology and management of rickets. The Orthopedic Clinics of North America, 3, 601–621.PubMedGoogle Scholar
  36. Stamp, T. C., & Baker, L. R. (1976). Recessive hypophosphataemic rickets, and possible aetiology of the ‘vitamin D-resistant’ syndrome. Archives of Disease in Childhood, 51, 360–365.PubMedCrossRefGoogle Scholar
  37. States, L. J. (2001). Imaging of metabolic bone disease and marrow disorders in children. Radiologic Clinics of North America, 39(4), 749–772.PubMedCrossRefGoogle Scholar
  38. Teitelbaum, S. L. (1980). Pathological manifestations of osteomalacia and rickets. Clinics in Endocrinology and Metabolism, 9, 43–62.PubMedCrossRefGoogle Scholar
  39. Thakker, R. V., Davies, K. E., Read, A. P., et al. (1990). Linkage analysis of two cloned DNA sequences, DXS197 and DXS207, in hypophosphatemic rickets families. Genomics, 8, 189–193.PubMedCrossRefGoogle Scholar
  40. The, H. Y. P. (1995). Consortium: A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nature Genetics, 11, 130–136.CrossRefGoogle Scholar
  41. Thomas, M. K., & Demay, M. B. (2000). Vitamin D deficiency and disorders of vitamin D metabolism. Endocrinology and Metabolism Clinics, 29, 611–627.PubMedCrossRefGoogle Scholar
  42. Vintzileos, A. M., Campbell, W. A., Soberman, S. M., et al. (1985). Fetal atrial flutter and X-linked dominant vitamin D-resistant rickets. Obstetrics and Gynecology, 65, 39S–44S.PubMedGoogle Scholar
  43. Weisman, Y., Jaccard, N., Legum, C., et al. (1990). Prenatal diagnosis of vitamin D-dependent rickets, type II: Response to 1,25-dihydroxyvitamin D in amniotic fluid cells and fetal tissues. Journal of Clinical Endocrinology and Metabolism, 71, 937–943.PubMedCrossRefGoogle Scholar
  44. Wharton, B., & Bishop, N. (2003). Rickets. Lancet, 362, 1389–1400.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Personalised recommendations