Skip to main content

Spatial Description of Biochemical Networks

  • Living reference work entry
  • First Online:
Encyclopedia of Systems and Control
  • 527 Accesses

Abstract

Many biological behaviors require that biochemical species be distributed spatially throughout the cell or across a number of cells. To explain these situations accurately requires a spatial description of the underlying network. At the continuum level, this is usually done using reaction-diffusion equations. Here we demonstrate how this class of models arises. We also show how the framework is used in two popular models proposed to explain spatial patterns during development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Chen Y, Lagerholm BC, Yang B, Jacobson K (2006) Methods to measure the lateral diffusion of membrane lipids and proteins. Methods 39:147–153

    Article  Google Scholar 

  • Cowan AE, Moraru II, Schaff JC, Slepchenko BM, Loew LM (2012) Spatial modeling of cell signaling networks. Methods Cell Biol 110:195–221

    Article  Google Scholar 

  • Goehring NW, Grill SW (2013) Cell polarity: mechanochemical patterning. Trends Cell Biol 23:72–80

    Article  Google Scholar 

  • Holmes WR, Edelstein-Keshet L (2013) A comparison of computational models for eukaryotic cell shape and motility. PLoS Comput Biol 8:e1002793; 2012

    Article  Google Scholar 

  • Iglesias PA, Devreotes PN (2008) Navigating through models of chemotaxis. Curr Opin Cell Biol 20:35–40

    Article  Google Scholar 

  • Kondo S, Miura T (2010) Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329:1616–1620

    Article  MATH  MathSciNet  Google Scholar 

  • Lander AD (2013) How cells know where they are. Science 339:923–927

    Article  Google Scholar 

  • Mahmutovic A, Fange D, Berg OG, Elf J (2012) Lost in presumption: stochastic reactions in spatial models. Nat Methods 9:1163–1166

    Article  Google Scholar 

  • Meyers J, Craig J, Odde DJ (2006) Potential for control of signaling pathways via cell size and shape. Curr Biol 16:1685–1693

    Article  Google Scholar 

  • Rogers KW, Schier AF (2011) Morphogen gradients: from generation to interpretation. Annu Rev Cell Dev Biol 27:377–407

    Article  Google Scholar 

  • Sheth R, Marcon L, Bastida MF, Junco M, Quintana L, Dahn R, Kmita M, Sharpe J, Ros MA (2012) Hox genes regulate digit patterning by controlling the wavelength of a turing-type mechanism. Science 338:1476–1480

    Article  Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond 237:37–72

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo A. Iglesias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this entry

Cite this entry

Iglesias, P.A. (2014). Spatial Description of Biochemical Networks. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5102-9_89-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5102-9_89-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Online ISBN: 978-1-4471-5102-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics