Encyclopedia of Systems and Control

Living Edition
| Editors: John Baillieul, Tariq Samad

Observers for Nonlinear Systems

  • Laurent Praly
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4471-5102-9_84-1


Observers are objects delivering estimation of variables which cannot be directly measured. The access to such hidden variables is made possible by combining modeling and measurements. But this is bringing face to face real world and its abstraction with, as a result, the need for dealing with uncertainties and approximations leading to difficulties in implementation and convergence.


Estimation Distinguishability Detectability 
This is a preview of subscription content, log in to check access.


  1. Alamir M (2007) Nonlinear moving horizon observers: theory and real-time implementation. In: Nonlinear observers and applications. Lecture notes in control and information sciences. Springer, Berlin/New YorkGoogle Scholar
  2. Andrieu V, Praly L (2006) On the existence of Kazantzis-Kravaris/Luenberger observers. SIAM J Control Optim 45(2):432–456CrossRefMathSciNetGoogle Scholar
  3. Angeli D (2002) A Lyapunov approach t incremental stability properties. IEEE Trans Autom Control 47(3):410–421CrossRefMathSciNetGoogle Scholar
  4. Arulampalam M, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process 50(2):174–188CrossRefGoogle Scholar
  5. Bain A, Crisan D (2009) Fundamentals of stochastic filtering. Stochastic modelling and applied probability, vol 60. Springer, New York/LondonCrossRefGoogle Scholar
  6. Başar T, Bernhard P (1995) H optimal control and related minimax design problems: a dynamic game approach, revised 2nd edn. Birkäuser, BostonGoogle Scholar
  7. Bertsekas D, Rhodes IB (1971) On the minimax reachability of target sets and target tubes. Automatica 7:233–213CrossRefMATHMathSciNetGoogle Scholar
  8. Besançon G (2000) Remarks on nonlinear adaptive observer design. Syst Control Lett 41(4):271–280CrossRefMATHGoogle Scholar
  9. Bonnabel S, Martin P, Rouchon P (2008) Symmetry-preserving observers. IEEE Trans Autom Control 53(11):2514–2526CrossRefMathSciNetGoogle Scholar
  10. Bucy R, Joseph P (1987) Filtering for stochastic processes with applications to guidance, 2nd edn. Chelsea Publishing Company, ChelseaGoogle Scholar
  11. Candy J (2009) Bayesian signal processing: classical, modern, and particle filtering methods. Wiley series in adaptive learning systems for signal processing, communications and control. Wiley, HobokenGoogle Scholar
  12. Carnevale D, Karagiannis D, Astolfi A (2008) Invariant manifold based reduced-order observer design for nonlinear systems. IEEE Trans Autom Control 53(11):2602–2614CrossRefMathSciNetGoogle Scholar
  13. Cox H (1964) On the estimation of state variables and parameters for noisy dynamic systems. IEEE Trans Autom Control 9(1):5–12CrossRefGoogle Scholar
  14. Fan X, Arcak M (2003) Observer design for systems with multivariable monotone nonlinearities. Syst Control Lett 50:319–330CrossRefMATHMathSciNetGoogle Scholar
  15. Gauthier J-P, Kupka I (2001) Deterministic observation theory and applications. Cambridge University Press, Cambridge/New YorkCrossRefMATHGoogle Scholar
  16. Isidori A (1995) Nonlinear control systems, 3rd edn. Springer, Berlin/New YorkCrossRefMATHGoogle Scholar
  17. Jazwinski A (2007) Stochastic processes and filtering theory. Dover, MineolaMATHGoogle Scholar
  18. Jouffroy J (2005) Some ancestors of contraction analysis. In: Proceedings of the IEEE conference on decision and control, Seville, pp 5450–5455Google Scholar
  19. Krener A, Isidori A (1983) Linearization by output injection and nonlinear observer. Syst Control Lett 3(1):47–52CrossRefMATHMathSciNetGoogle Scholar
  20. Luenberger D (1964) Observing the state of a linear system. IEEE Trans Mil Electron MIL-8:74–80CrossRefGoogle Scholar
  21. Milanese M, Norton J, Piet-Lahanier H, Walter E (eds) (1996) Bounding approaches to system identification. Plenum Press, New YorkMATHGoogle Scholar
  22. Respondek W, Pogromsky A, Nijmeijer H (2004) Time scaling for observer design with linearizable error dynamics. Automatica 40:277–285CrossRefMATHMathSciNetGoogle Scholar
  23. Sanfelice R, Praly L (2012) Convergence of nonlinear observers on with a riemannian metric (Part I). IEEE Trans Autom Control 57(7):1709–1722CrossRefMathSciNetGoogle Scholar
  24. Shoshitaishvili A (1990) Singularities for projections of integral manifolds with applications to control and observation problems. In: Arnol’d VI (ed) Advances in Soviet mathematics. Theory of singularities and its applications, vol 1. American Mathematical Society, ProvidenceGoogle Scholar
  25. Tornambe A (1988) Use of asymptotic observers having high gains in the state and parameter estimation. In: Proceedings of the IEEE conference on decision and control, Austin, pp 1791–1794Google Scholar
  26. Willems JC (2004) Deterministic least squares filtering. J Econ 118:341–373CrossRefMATHMathSciNetGoogle Scholar
  27. Witsenhausen H (1966) Minimax control of uncertain systems. Elec. Syst. Lab. M.I.T. Rep. ESL-R-269M, Cambridge, May 1966Google Scholar
  28. Yoshizawa T (1966) Stability theory by Lyapunov’s second method. The Mathematical Society of Japan, TokyoGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.MINES ParisTechPSL Research UniversityCAS, FontainebleauFrance