Skip to main content

Optimal Control and Pontryagin’s Maximum Principle

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Systems and Control
  • 102 Accesses

Abstract

Pontryagin’s Maximum Principle is a set of conditions providing information about solutions to optimal control problems; that is, optimization problems with differential equation constraints. It unifies and extends many classical necessary conditions from the calculus of variations. This article provides an overview of the Maximum Principle, including free end-time and nonsmooth versions. A time-optimal control problem is solved, to illustrate its application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Clarke FH (1976) The maximum principle under minimal hypotheses. SIAM J Control Optim 14:1078– 1091

    Article  MathSciNet  Google Scholar 

  • Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mischenko EF (1962) The mathematical theory of optimal processes. Tririgoff KN Transl., Neustadt LW Ed. Wiley, New York

    Google Scholar 

  • Warga J (1983) Optimization and controllability without differentiability assumptions. SIAM J Control Optim 21:239–260

    Article  MathSciNet  Google Scholar 

Recommended Reading

  • Berkovitz LD (1974) Optimal control theory. Applied mathematical sciences, vol 12. Springer, New York

    Book  Google Scholar 

  • Bryson AE, Ho Y-C (1975),Applied optimal control (Revised edn), Halstead Press (a division of John Wiley and Sons), New York

    Google Scholar 

  • Fleming WH, Rishel RW (1975) Deterministic and stochastic optimal control. Springer, New York

    Book  Google Scholar 

  • Ioffe AD, Tihomirov VM (1979) Theory of extremal problems. North-Holland, Amsterdam Reflections on the origins of the Maximum Principle appear in:

    Google Scholar 

  • Pesch HJ, Plail M (2009) The maximum principle of optimal control: a history of ingenious ideas and missed opportunities. Control Cybern 38:973–995 Expository texts that also cover advances in the theory of necessary conditions related to the Maximum Principle, based on techniques of Nonsmooth Analysis:

    Google Scholar 

  • Clarke FH (1983) Optimization and nonsmooth analysis. Wiley-Interscience, New York

    MATH  Google Scholar 

  • Clarke FH (2013) Functional analysis, calculus of variations and optimal control. Graduate texts in mathematics. Springer, London

    Book  Google Scholar 

  • Vinter RB (2000) Optimal control. Birkhaüser, Boston Engineering text illustrating the application of the Maximum Principle to solve problems of optimal control and design, in flight mechanics and other areas

    Google Scholar 

  • Bryson AE (1999) Dynamic optimization. Addison Wesley Longman, Menlo Park

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Vinter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag London Ltd., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vinter, R. (2020). Optimal Control and Pontryagin’s Maximum Principle. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5102-9_200-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5102-9_200-2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5102-9

  • Online ISBN: 978-1-4471-5102-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Optimal Control and Pontryagin’s Maximum Principle
    Published:
    02 March 2020

    DOI: https://doi.org/10.1007/978-1-4471-5102-9_200-2

  2. Original

    Optimal Control and Pontryagin’s Maximum Principle
    Published:
    14 March 2014

    DOI: https://doi.org/10.1007/978-1-4471-5102-9_200-1