Encyclopedia of Systems and Control

Living Edition
| Editors: John Baillieul, Tariq Samad

Control for High-Speed Nanopositioning

  • S. O. Reza Moheimani
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4471-5102-9_184-1

Abstract

Over the last two and a half decades we have observed astonishing progress in the field of nanotechnology. This progress is largely due to the invention of Scanning Tunneling Microscope (STM) and Atomic Force Microscope (AFM) in the 1980s. Central to the operation of AFM and STM is a nanopositioning system that moves a sample or a probe, with extremely high precision, up to a fraction of an Angstrom, in certain applications. This note concentrates on the fundamental role of feedback, and the need for model-based control design methods in improving accuracy and speed of operation of nanopositioning systems.

Keywords and Phrases

Scanning probe microscopy atomic force microscopy nanopositioining high-precision mechatronic systems 
This is a preview of subscription content, log in to check access.

Bibliography

  1. Cherubini G, Chung CC, Messner WC, Moheimani SOR (2012) Control methods in data-storage systems. IEEE Trans Control Syst Technol 20(2):296–322CrossRefGoogle Scholar
  2. Clayton GM, Tien S, Leang KK, Zou Q, Devasia S (2009) A review of feedforward control approaches in nanopositioning for high-speed SPM. J Dyn Syst Meas Control Trans ASME 131(6):1–19CrossRefGoogle Scholar
  3. Croft D, Shed G, Devasia S (2001) Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application. ASME J Dyn Syst Control 123(1):35–43CrossRefGoogle Scholar
  4. Devasia S, Eleftheriou E, Moheimani SOR (2007) A survey of control issues in nanopositioning. IEEE Trans Control Syst Technol 15(5):802–823CrossRefGoogle Scholar
  5. Gao W, Hocken RJ, Patten JA, Lovingood J, Lucca DA (2000) Construction and testing of a nanomachining instrument. Precis Eng 24(4):320–328CrossRefGoogle Scholar
  6. Krogmann D (1999) Image multiplexing system on the base of piezoelectrically driven silicon microlens arrays. In: Proceedings of the 3rd international conference on micro opto electro mechanical systems (MOEMS), Mainz, pp 178–185Google Scholar
  7. Meldrum DR, Pence WH, Moody SE, Cunningham DL, Holl M, Wiktor PJ, Saini M, Moore MP, Jang L, Kidd M, Fisher C, Cookson A (2001) Automated, integrated modules for fluid handling, thermal cycling and purification of DNA samples for high throughput sequencing and analysis. In: IEEE/ASME international conference on advanced intelligent mechatronics, AIM, Como, vol 2, pp 1211–1219Google Scholar
  8. Meyer E, Hug HJ, Bennewitz R (2004) Scanning probe microscopy. Springer, HeidelbergCrossRefGoogle Scholar
  9. Pantazi A, Sebastian A, Antonakopoulos TA, Bachtold P, Bonaccio AR, Bonan J, Cherubini G, Despont M, DiPietro RA, Drechsler U, DurIg U, Gotsmann B, Haberle W, Hagleitner C, Hedrick JL, Jubin D, Knoll A, Lantz MA, Pentarakis J, Pozidis H, Pratt RC, Rothuizen H, Stutz R, Varsamou M, Weismann D, Eleftheriou E (2008) Probe-based ultrahigh-density storage technology. IBM J Res Dev 52(4–5):493–511CrossRefGoogle Scholar
  10. Salapaka S (2003) Control of the nanopositioning devices. In: Proceedings of the IEEE conference on decision and control, MauiGoogle Scholar
  11. Sebastian A, Pantazi A, Moheimani SOR, Pozidis H, Eleftheriou E (2008a) Achieving sub-nanometer precision in a MEMS storage device during self-servo write process. IEEE Trans Nanotechnol 7(5):586–595. doi:10.1109/TNANO.2008.926441CrossRefGoogle Scholar
  12. Sebastian A, Pantazi A, Pozidis H, Eleftheriou E (2008b) Nanopositioning for probe-based data storage [applications of control]. IEEE Control Syst Mag 28(4):26–35CrossRefMathSciNetGoogle Scholar
  13. Verma S, Kim W, Shakir H (2005) Multi-axis maglev nanopositioner for precision manufacturing and manipulation applications. IEEE Trans Ind Appl 41(5):1159–1167CrossRefGoogle Scholar
  14. Vettiger P, Cross G, Despont M, Drechsler U, Durig U, Gotsmann B, Haberle W, Lantz MA, Rothuizen HE, Stutz R, Binnig GK (2002) The “millipede”-nanotechnology entering data storage. IEEE Trans Nanotechnol 1(1):39–54CrossRefGoogle Scholar
  15. Whitesides GM, Christopher Love J (2001) The art of building small. Sci Am 285(3):38–47CrossRefGoogle Scholar
  16. Yong YK, Aphale S, Moheimani SOR (2009) Design, identification and control of a flexure-based XY stage for fast nanoscale positioning. IEEE Trans Nanotechnol 8(1):46–54CrossRefGoogle Scholar
  17. Yong YK, Moheimani SOR, Kenton BJ, Leang KK (2012) Invited review article: high-speed flexure-guided nanopositioning: mechanical design and control issues. Rev Sci Instrum 83(12):121101CrossRefGoogle Scholar
  18. Yong YK, Bhikkaji B, Moheimani SOR (2013) Design, modeling and FPAA-based control of a high-speed atomic force microscope nanopositioner. IEEE/ASME Trans Mechatron 18(3):1060–1071. doi:10.1109/TMECH.2012.2194161CrossRefGoogle Scholar
  19. Zou Q, Leang KK, Sadoun E, Reed MJ, Devasia S (2004) Control issues in high-speed AFM for biological applications: collagen imaging example. Asian J Control Spec Issue Adv Nanotechnol Control 6(2):164–178Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • S. O. Reza Moheimani
    • 1
  1. 1.School of Electrical Engineering & Computer ScienceThe University of NewcastleCallaghanAustralia