Skip to main content

Trajectory Generation for Aerial Multicopters

  • 243 Accesses


The ability to generate feasible and safe trajectories is crucial for autonomous multicopter systems. These trajectories can ideally be generated on low-cost, embedded computational hardware and exploit the system’s full dynamic capabilities while satisfying constraints. As operations increasingly focus on operation at high speeds, or in dynamically changing environments, strategies are required that can rapidly plan and replan trajectories. This entry reviews typical approaches for trajectory generation of aerial robots, with a focus on multicopters, and discusses various approximations that may be used to make the problem more tractable. The strategy of planning in higher derivatives of the vehicle position (such as acceleration, jerk, and snap) is discussed in depth. We also discuss the related issue of expressing system limitations and constraints in these derivatives. Finally, possible future directions are discussed.


  • Multicopters
  • UAV
  • Planning
  • Differential flatness

This is a preview of subscription content, access via your institution.

Fig. 1


  • Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge, England

    CrossRef  Google Scholar 

  • Brescianini D, D’Andrea R (2018) An omni-directional multirotor vehicle. Mechatronics 55:76–93

    CrossRef  Google Scholar 

  • Chen J, Liu T, Shen S (2016) Online generation of collision-free trajectories for quadrotor flight in unknown cluttered environments. In: 2016 IEEE international conference on robotics and automation (ICRA). IEEE, pp 1476–1483

    Google Scholar 

  • Falanga D, Foehn P, Lu P, Scaramuzza D (2018) PAMPC: perception-aware model predictive control for quadrotors. In: 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 1–8

    Google Scholar 

  • Ferreau HJ, Almér S, Verschueren R, Diehl M, Frick D, Domahidi A, Jerez JL, Stathopoulos G, Jones C (2017) Embedded optimization methods for industrial automatic control. IFAC-PapersOnLine 50(1): 13194–13209

    CrossRef  Google Scholar 

  • Fliess M, Lévine J, Martin P, Rouchon P (1995) Flatness and defect of non-linear systems: introductory theory and examples. Int J Control 61(6):1327–1361

    CrossRef  MathSciNet  Google Scholar 

  • Hehn M, D’Andrea R (2014) A frequency domain iterative learning algorithm for high-performance, periodic quadrocopter maneuvers. Mechatronics 24(8):954–965

    CrossRef  Google Scholar 

  • Hehn M, Ritz R, D’Andrea R (2012) Performance benchmarking of quadrotor systems using time-optimal control. Auton Robots 33:69–88

    CrossRef  Google Scholar 

  • Holda C, Ghalamchi B, Mueller MW (2018) Tilting multicopter rotors for increased power efficiency and yaw authority. IEEE, pp 143–148

    Google Scholar 

  • Houska B, Ferreau H, Diehl M (2011) ACADO toolkit – an open source framework for automatic control and dynamic optimization. Optimal Control Appl Methods 32(3):298–312

    CrossRef  MathSciNet  Google Scholar 

  • Jiang G, Voyles R (2014) A nonparallel hexrotor UAV with faster response to disturbances for precision position keeping. In: 2014 IEEE international symposium on safety, security, and rescue robotics. IEEE, pp 1–5

    Google Scholar 

  • Kalmár-Nagy T, D’Andrea R, Ganguly P (2004) Near-optimal dynamic trajectory generation and control of an omnidirectional vehicle. Robot Auton Syst 46(1):47–64

    CrossRef  Google Scholar 

  • Mahony R, Kumar V, Corke P (2012) Aerial vehicles: modeling, estimation, and control of quadrotor. IEEE Robot Autom Magaz 19(3):20–32

    CrossRef  Google Scholar 

  • Mellinger D, Kumar V (2011) Minimum snap trajectory generation and control for quadrotors. In: IEEE international conference on robotics and automation (ICRA), pp 2520–2525

    Google Scholar 

  • Mueller MW, D’Andrea R (2013) A model predictive controller for quadrocopter state interception. In: European control conference, pp 1383–1389

    Google Scholar 

  • Mueller MW, D’Andrea R (2016) Relaxed hover solutions for multicopters: application to algorithmic redundancy and novel vehicles. Int J Robot Res 35(8):873–889

    CrossRef  Google Scholar 

  • Mueller MW, Hehn M, D’Andrea R (2015) A computationally efficient motion primitive for quadrocopter trajectory generation. IEEE Trans Robot 31(6): 1294–1310

    CrossRef  Google Scholar 

  • Murray RM, Rathinam M, Sluis W (1995) Differential flatness of mechanical control systems: a catalog of prototype systems. In: ASME international mechanical engineering congress and exposition

    Google Scholar 

  • Nägeli T, Alonso-Mora J, Domahidi A, Rus D, Hilliges O (2017) Real-time motion planning for aerial videography with dynamic obstacle avoidance and viewpoint optimization. IEEE Robot Autom Lett 2(3):1696–1703

    CrossRef  Google Scholar 

  • Papachristos C, Khattak S, Alexis K (2017) Uncertainty-aware receding horizon exploration and mapping using aerial robots. In: 2017 IEEE international conference on robotics and automation (ICRA). IEEE, pp 4568–4575

    Google Scholar 

  • Tagliabue A, Wu X, Mueller MW (2019) Model-free online motion adaptation for optimal range and endurance of multicopters. In: IEEE international conference on robotics and automation (ICRA)

    Google Scholar 

  • Ware J, Roy N (2016) An analysis of wind field estimation and exploitation for quadrotor flight in the urban canopy layer. In: 2016 IEEE international conference on robotics and automation (ICRA). IEEE, pp 1507–1514

    Google Scholar 

  • Zhou K, Doyle JC (1998) Essentials of robust control, vol 104. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  • Zhou S, Helwa MK, Schoellig AP (2017) Design of deep neural networks as add-on blocks for improving impromptu trajectory tracking. In: 2017 IEEE 56th annual conference on decision and control (CDC). IEEE, pp 5201–5207

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mark W. Mueller .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer-Verlag London Ltd., part of Springer Nature

About this entry

Verify currency and authenticity via CrossMark

Cite this entry

Mueller, M.W., D’Andrea, R. (2020). Trajectory Generation for Aerial Multicopters. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5102-9

  • Online ISBN: 978-1-4471-5102-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering