Encyclopedia of Systems and Control

2015 Edition
| Editors: John Baillieul, Tariq Samad

Walking Robots

  • Ambarish Goswami
Reference work entry
DOI: https://doi.org/10.1007/978-1-4471-5058-9_179

Abstract

This article presents an overview of mobile “walking” robots that use their legs to move from one place to another. Walking robots represent a fascinating class of machines which holds the potential for breakthrough applications and inspires multidisciplinary research with rich scientific content. The key feature that separates walking robots from all other classes of mobile robots is their ability to explore unprepared surfaces using discrete footholds. In this respect, these robots are truly the machine counterparts of biological land animals.

Keywords

Balance Fall Gait Humanoid robots 
This is a preview of subscription content, log in to check access.

Bibliography

  1. Asimov I (1950) I, Robot. Bantam Dell, New York, NYGoogle Scholar
  2. Bares JE, Wettergreen DS (1999) Dante II: technical description, results, and lessons learned. Int J Robot Res 18(7):621–649CrossRefGoogle Scholar
  3. Chevallereau C, Westervelt ER, Grizzle JW (2005) Asymptotically stable running for a five-link, four-actuator, planar bipedal robot. Int J Robot Res 24(6):431–464CrossRefGoogle Scholar
  4. Falconer J (2013) NAO robot goes to school to help kids with autism. IEEE Specturm, May 2013. http://spectrum.ieee.org/automaton/robotics/humanoids/aldebaran-robotics-nao-robot-autism-solution-for-kids
  5. Fujiwara K, Kanehiro F, Kajita S, Kaneko K, Yokoi K, Hirukawa H (2002) UKEMI: falling motion control to minimize damage to biped humanoid robot. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), St. Louis, pp 2521–2526Google Scholar
  6. Gouaillier D, Hugel V, Blazevic P, Kilner C, Monceaux J, Lafourcade P, Marnier B, Serre J, Maisonnier B (2009) Mechatronic design of NAO humanoid. In: IEEE international conference on robotics and automation (ICRA), Kobe, pp 2124–2129Google Scholar
  7. Hamilton E (1940). Collected Captain Future, Haffner Press, Royal Oak, MichiganGoogle Scholar
  8. International Federation of Robotics (IFR) (2011) press release. http://www.ifr.org/news/ifr-press-release/50-years-industrial-robots-410/
  9. Ishida T, Kuroki Y, Takahashi T (2004) Analysis of motions of a small biped entertainment robot. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), Sendai, pp 142–147Google Scholar
  10. Kajita S, Espiau B (2008) Legged robots. In: Siciliano B, Khatib O (eds) Springer Handbook of Robotics. Springer, Berlin, pp 361–389CrossRefGoogle Scholar
  11. Kosuge K (2010) Dance partner robot: an engineering approach to human-robot interaction. In: 5th ACM/IEEE international conference on human-robot interaction (HRI), OsakaGoogle Scholar
  12. Lewinger WA, Branicky MS, Quinn RD (2005) Insect-inspired, actively compliant hexapod capable of object manipulation. In: Proceedings of the CLAWAR’2005 – 8th international conference on climbing and walking robots, Springer-Verlag Berlin HeidelbergGoogle Scholar
  13. Malone R (2004) Ultimate robot. DK Publishing, New YorkGoogle Scholar
  14. McGeer T (1990) Passive dynamic walking. Int J Robot Res 9(2):62–82CrossRefGoogle Scholar
  15. Raibert M (1989) Legged robots. In: Brady M (ed) Robotics science. System development foundation benchmark series. MIT, CambridgeGoogle Scholar
  16. Raibert M, Blankespoor K, Nelson G, Playter R, The BigDog Team (2008) BigDog, the rough-terrain quaduped robot. In: Proceedings of the 17th IFAC world congress, Seoul, pp 10822–10825Google Scholar
  17. Robins B, Dautenhahn K, Dickerson P (2012) Embodiment and cognitive learning – can a humanoid robot help children with autism to learn about tactile social behaviour. Soc Robot Lect Notes Comput Sci 7621:66–75CrossRefGoogle Scholar
  18. Sardain P, Bessonnet G (2004) Forces acting on a biped robot. Center of pressure-zero moment point. IEEE Trans Syst Man Cybern 34:630–637CrossRefGoogle Scholar
  19. Vukobratović M, Juričić D (1969) Contribution to the synthesis of biped gait. IEEE Trans Bio-Med Eng 16(1):1–6CrossRefGoogle Scholar
  20. Waldron KJ, McGhee RB (1986) The adaptive suspension vehicle. IEEE Control Syst Mag 6(6): 7–12CrossRefGoogle Scholar
  21. Yamasaki F, Nakagawa Y (2006) Education using small humanoid robot. In: Proceedings of the 3rd international symposium on autonomous minirobots for research and edutainment (AMiRE 2005), Fukui, pp 248–253Google Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Ambarish Goswami
    • 1
  1. 1.Honda Research InstituteMountain ViewUSA