Encyclopedia of Systems and Control

2015 Edition
| Editors: John Baillieul, Tariq Samad

Wheeled Robots

  • Giuseppe Oriolo
Reference work entry
DOI: https://doi.org/10.1007/978-1-4471-5058-9_178

Abstract

The use of mobile robots in service applications is steadily increasing. Most of these systems achieve locomotion using wheels. As a consequence, they are subject to differential constraints that are nonholonomic, i.e., non-integrable. This article reviews the kinematic models of wheeled robots arising from these constraints and discusses their fundamental properties and limitations from a control viewpoint. An overview of the main approaches for trajectory planning and feedback motion control is provided.

Keywords

Differential flatness Nonholonomic constraints Nonlinear controllability Smooth stabilizability 
This is a preview of subscription content, log in to check access

Bibliography

  1. Aicardi M, Casalino G, Bicchi A, Balestrino A (1995) Closed loop steering of unicycle-like vehicles via lyapunov techniques. IEEE Robot Autom Mag 2(1): 27–35CrossRefGoogle Scholar
  2. Bastin G, Campion G, D’Andréa-Novel B (1996) Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Trans Robot Autom 12: 47–62CrossRefGoogle Scholar
  3. Brockett RW (1983) Asymptotic stability and feedback stabilization. In: Brockett RW, Millman RS, Sussmann HJ (eds) Differential geometric control theory. Birkhauser, BostonGoogle Scholar
  4. Canudas de Wit C, Khennouf H, Samson C, Sørdalen OJ (1993) Nonlinear control design for mobile robots. In: Zheng YF (ed) Recent trends in mobile robots. World Scientific, Singapore, pp 121–156Google Scholar
  5. Choset H, Lynch KM, Hutchinson S, Kantor G, Burgard W, Kavraki LE, Thrun S (2005) Principles of robot motion: theory, algorithms, and implementations. MIT, CambridgeGoogle Scholar
  6. De Luca A, Oriolo G, Samson C (1998) Feedback control of a nonholonomic car-like robot. In: Laumond J-P (ed) Robot motion planning and control. Springer, London, pp 171–253CrossRefGoogle Scholar
  7. Fliess M, Lévine J, Martin P, Rouchon P (1995) Flatness and defect of nonlinear systems: introductory theory and examples. Int J Control 61:1327–1361CrossRefGoogle Scholar
  8. Lizárraga DA (2004) Obstructions to the existence of universal stabilizers for smooth control systems. Math Control Signals Syst 16:255–277CrossRefGoogle Scholar
  9. M’Closkey RT, Murray RM (1997) Exponential stabilization of driftless nonlinear control systems using homogeneous feedback. IEEE Trans Autom Control 42:614–628MathSciNetCrossRefGoogle Scholar
  10. Morin P, Samson C (2000) Control of non-linear chained systems: from the Routh-Hurwitz stability criterion to time-varying exponential stabilizers. IEEE Trans Autom Control 45: 141–146MathSciNetCrossRefGoogle Scholar
  11. Morin P, Samson C (2008) Motion control of wheeled mobile robots. In: Khatib O, Siciliano B (eds) Handbook of robotics. Springer, New York, pp 799–826CrossRefGoogle Scholar
  12. Morin P, Samson C (2009) Control of nonholonomic mobile robots based on the transverse function approach. IEEE Trans Robot 25:1058–1073CrossRefGoogle Scholar
  13. Murray RM, Sastry SS (1993) Nonholonomic motion planning: steering using sinusoids. IEEE Trans Autom Control 38:700–716MathSciNetCrossRefGoogle Scholar
  14. Neimark JI, Fufaev FA (1972) Dynamics of nonholonomic systems. American Mathematical Society, ProvidenceGoogle Scholar
  15. Oriolo G, Vendittelli M (2005) A framework for the stabilization of general nonholonomic systems with an application to the plate-ball mechanism. IEEE Trans Robot 21:162–175CrossRefGoogle Scholar
  16. Oriolo G, De Luca A, Vendittelli M (2002) WMR control via dynamic feedback linearization: design, implementation and experimental validation. IEEE Trans Control Syst Technol 10: 835–852CrossRefGoogle Scholar
  17. Samson C (1993) Time-varying feedback stabilization of car-like wheeled mobile robots. Int J Robot Res 12(1):55–64MathSciNetCrossRefGoogle Scholar
  18. Sastry S (2005) Nonlinear systems: analysis, stability and control. Springer, New YorkGoogle Scholar
  19. Siciliano B, Sciavicco L, Villani L, Oriolo G (2009) Robotics: modelling, planning and control. Springer, LondonCrossRefGoogle Scholar
  20. Siegwart R, Nourbakhsh IR (2004) Introduction to autonomous mobile robots. MIT, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Giuseppe Oriolo
    • 1
  1. 1.Sapienza Università di RomaRomaItaly