Skip to main content

Robust Control in Gap Metric

  • Reference work entry
  • First Online:
Encyclopedia of Systems and Control

Abstract

Robust control needs to start with a model of system uncertainty. What is a good uncertainty model? First it needs to capture the possible system perturbations and uncertainties. Second it needs to be mathematically tractable. The gap metric was introduced by Zames and El-Sakkary for this purpose. Its study climaxed in an award-winning paper by Georgiou and Smith. A modified gap, called the ν-gap, was later discovered by Vinnicombe and was shown to have advantages. With these metrics in hand, robust stabilization issues can be nicely addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Anderson BDO, Brinsmead TS, De Bruyne F (2002) The Vinnicombe metric for nonlinear operators. IEEE Trans Autom Control 47:1450–1465

    Google Scholar 

  • Ball JA, Sasane AJ (2012) Extension of the ν-metric. Complex Anal Oper Theory 6:65–89

    MathSciNet  Google Scholar 

  • Bian W, French M (2005) Graph topologies, gap metrics, and robust stability for nonlinear systems. SIAM J Control Optim 44:418–443

    MathSciNet  Google Scholar 

  • El-Sakkary AK (1985) The gap metric: robustness of stabilization of feedback systems. IEEE Trans Autom Control 30:240–247

    MathSciNet  Google Scholar 

  • Feintuch A (1998) Robust control theory in Hilbert space. Springer, New York

    Google Scholar 

  • Foias C, Georgiou TT, Smith MC (1993) Robust stability of feedback systems: a geometric approach using the gap metric. SIAM J Control Optim 31:1518–1537

    MathSciNet  Google Scholar 

  • Georgiou TT (1988) On the computation of the gap metric. Syst Control Lett 11:253–257

    MathSciNet  Google Scholar 

  • Georgiou TT, Smith MC (1990) Optimal robustness in the gap metric. IEEE Trans Autom Control 35:673–687

    MathSciNet  Google Scholar 

  • Georgiou TT, Smith MC (1992) Robust stabilization in the gap metric: controller design for distributed plants. IEEE Trans Autom Control 37:1133–1143

    MathSciNet  Google Scholar 

  • Georgiou TT, Smith MC (1997) Robustness analysis of nonlinear feedback systems: an input-output approach. IEEE Trans Autom Control 42:1200–1221

    MathSciNet  Google Scholar 

  • Glover K, McFarlane DC (1989) Robust stabilization of normalized coprime factor plant descriptions with \(\mathcal{H}_{\infty }\) bounded uncertainties. IEEE Trans Autom Control 34:821–830

    MathSciNet  Google Scholar 

  • James MR, Smith MC, Vinnicombe G (2005) Gap metrics, representations and nonlinear robust stability. SIAM J Control Optim 43:1535–1582

    MathSciNet  Google Scholar 

  • Kato T (1976) Perturbation theory for linear operators, 2nd edn. Springer, Berlin

    Google Scholar 

  • McFarlane DC, Glover K (1992) A loop shaping design procedure using \(\mathcal{H}_{\infty }\)-synthesis. IEEE Trans Autom Control 37:759–769

    MathSciNet  Google Scholar 

  • Qiu L, Davison EJ (1992a) Feedback stability under simultaneous gap metric uncertainties in plant and controller. Syst Control Lett 18:9–22

    MathSciNet  Google Scholar 

  • Qiu L, Davison EJ (1992b) Pointwise gap metrics on transfer matrices. IEEE Trans Autom Control 37:741–758

    MathSciNet  Google Scholar 

  • Qiu L, Zhang Y, Li CK (2008) Unitarily invariant metrics on the Grassmann space. SIAM J Matrix Anal 27:501–531

    Google Scholar 

  • Qiu L, Zhou K (2013) Preclassical tools for postmodern control. IEEE Control Syst Mag 33(4): 26–38

    MathSciNet  Google Scholar 

  • Vidyasagar M (1984) The graph metric for unstable plants and robustness estimates for feedback stability. IEEE Trans Autom Control 29:403–418

    MathSciNet  Google Scholar 

  • Vidyasagar M (1985) Control system synthesis: a factorization approach. MIT, Cambridge

    Google Scholar 

  • Vinnicombe G (1993) Frequency domain uncertainty and the graph topology. IEEE Trans Autom Control 38:1371–1383

    MathSciNet  Google Scholar 

  • Vinnicombe G (2001) Uncertainty and feedback: \(\mathcal{H}_{\infty }\) loop-shaping and the ν-gap metric. Imperial Collage Press, London

    Google Scholar 

  • Zames G, El-Sakkary AK (1980) Unstable systems and feedback: the gap metric. In: Proceedings of the 16th Allerton conference, Illinois, pp 380–385

    Google Scholar 

  • Zhang Y, Qiu L (2010) From subadditive inequalities of singular values to triangular inequalities of canonical angles. SIAM J Matrix Anal Appl 31:1606–1620

    MathSciNet  Google Scholar 

  • Zhou K, Doyle JC (1998) Essentials of robust control. Prentice Hall, Upper Saddle River

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this entry

Cite this entry

Qiu, L. (2015). Robust Control in Gap Metric. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5058-9_165

Download citation

Publish with us

Policies and ethics