Skip to main content

Motion Control

  • Reference work entry
  • First Online:
Handbook of Manufacturing Engineering and Technology

Abstract

Robot manipulators have been widely used in industrial automation. In many modern robot control applications, sensory information such as visual feedback is used to improve positioning accuracy and robustness to uncertainty. This chapter introduces basic concepts and design methods that are employed for motion control of robot manipulators with uncertainty. The chapter covers both basic methods in joint-space control and advance topics in sensory task-space control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah CT, Dawson D, Dorato P, Jamshidi M (1991) Survey of robust control for rigid robots. IEEE Trans Control Syst Mag 11(2):24–30

    Article  Google Scholar 

  • Arimoto S (1994) A class of quasi-natural potentials and hyper-stable PID servo-loops for nonlinear robotic systems. Trans Soc Instrum Control Eng 30(9):1005–1012

    Article  Google Scholar 

  • Arimoto S (1996) Control theory of non-linear mechanical systems: a passivity-based and circuit-theoretic approach. Oxford University Press, New York

    MATH  Google Scholar 

  • Arimoto S, Miyazaki F (1985)Asymptotic stability of feedback control for robot manipulators. In: Proceedings of IFAC symposium on robot control, Barcelona, pp 447–452

    Google Scholar 

  • Arimoto S, Miyazaki F (1984)Stability and robustness of PID feedback control for robot manipulators of sensory capability. In: Proceedings of the 1st international symposium on robotics research, pp 783–799

    Google Scholar 

  • Arimoto S, Kawamura S, Miyazaki F (1984) Bettering operation of robots by learning. J Robot Syst 1(2):123–140

    Article  Google Scholar 

  • Arimoto S, Naniwa T, Parra-Vega V, Whitcomb L (1994) A quasi-natural potential and its role in design of hyper-stable PID servo-loop for robotic systems. In: Proceedings of the CAI Pacific symposium control and industrial automation application, pp 110–117

    Google Scholar 

  • Berghuis H, Ortega R, Nijmeijer H (1993) A robust adaptive robot controller. IEEE Trans Robot Autom 9(6):825–830

    Article  Google Scholar 

  • Braganza D, Dixon WE, Dawson DM, Xian B (2005)Tracking control for robot manipulators with kinematic and dynamic uncertainty. In: Proceedings of IEEE conference on decision and control, Seville, pp 5293–5297

    Google Scholar 

  • Cheah CC (2003)Approximate Jacobian robot control with adaptive Jacobian matrix. In: Proceedings of IEEE international conference on decision and control, Hawaii, pp 5859–5864

    Google Scholar 

  • Cheah CC, Liaw H (2005) Inverse Jacobian regulator with gravity compensation: stability and experiment. IEEE Trans Robot Autom 21(4):741–747

    Article  Google Scholar 

  • Cheah CC, Kawamura S, Arimoto S (1998) Feedback control for robotic manipulators with uncertain kinematics and dynamics. In: Proceedings of IEEE international conference on robotics and automation, Leuven, pp 3607–3612

    Google Scholar 

  • Cheah CC, Kawamura S, Arimoto S (1999a) Feedback control for robotic manipulators with an uncertain Jacobian matrix. J Robot Syst 12(2):119–134

    Article  MathSciNet  Google Scholar 

  • Cheah CC, Hirano M, Kawamura S, Arimoto S (2003) Approximate Jacobian control for robots with uncertain kinematics and dynamics. IEEE Trans Robot Autom 19(4):692–702

    Article  Google Scholar 

  • Cheah CC, Liu C, Slotine JJE (2004) Approximate Jacobian adaptive control for robot manipulators. In: Proceeding of IEEE international conference on robotics and automation, New Orleans, pp 3075–3080

    Google Scholar 

  • Cheah CC, Liu C, Slotine JJE (2006a) Adaptive tracking control for robots with unknown kinematic and dynamic properties. Int J Robot Res 25(3):283–296

    Article  Google Scholar 

  • Chien-Chern Cheah, Chao Liu, Slotine J-JE (2006b) Adaptive Jacobian tracking control of robots with uncertainties in kinematic, dynamic and actuator models. IEEE Trans Automat Contr 51(6):1024–1029

    Google Scholar 

  • Cheah CC, Liu C, Slotine JJE (2007) Adaptive vision based tracking control of robots with uncertainty in depth information. In: Proceedings of IEEE conference on roboties and automation, Roma, pp 2817–2822

    Google Scholar 

  • Cheah CC, Liu C, Slotine JJE (2010) Adaptive Jacobian vision based control for robots with uncertain depth information. Automatica 46:1228–1233

    Article  MATH  MathSciNet  Google Scholar 

  • Cheah CC, Kawamura S, Arimoto S, Lee K (1999) PID control for robotic manipulator with uncertain jacobian matrix. In: Proceedings of IEEE international conference on robotics and automation, Detroit, pp 494–499

    Google Scholar 

  • Craig JJ, Hsu P, Sastry SS (1987) Adaptive control of mechanical manipulators. Int J Robot Res 6(2):10–20

    Article  Google Scholar 

  • Dixon WE (2007) Adaptive regulation of amplitude limited robot manipulators with uncertain kinematics and dynamics. IEEE Trans Automat Control 52(3):488–493

    Article  MathSciNet  Google Scholar 

  • Garcia-Rodriguez R, Parra-Vega V (2012) Cartesian sliding PID control schemes for tracking robots with uncertain Jacobian. Trans Inst Meas Control 34(4):448–462

    Article  Google Scholar 

  • Hutchinson S, Hager GD, Corke P (1996) A tutorial on visual servo control. IEEE Trans Autom Control 12(5):651–670

    Article  Google Scholar 

  • Ioannou P, Sun J (1996) Robust adaptive control. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Kelly R (1993) Comments on adaptive PD controller for robot manipulators. IEEE Trans Robot Autom 9:117–119

    Article  Google Scholar 

  • Kelly R (1997) PD control with desired gravity compensation of robotic manipulators: a review. Int J Robot Res 16(5):660–672

    Article  Google Scholar 

  • Kelly R (1998) Global positioning of robot manipulators via PD control plus a class of nonlinear integral actions. IEEE Trans Autom Control 43(7):934–938

    Article  MATH  Google Scholar 

  • Kelly R, Santibanez V, Loria A (2005) Control of robot manipulators in joint space. Springer–Verlag, London

    Google Scholar 

  • Koditschek DE (1987)Adaptive techniques for mechanical systems. In: 5th Yale workshop on applications of adaptive systems theory, New Haven, pp 259–265

    Google Scholar 

  • Lee KW, Khalil H (1997) Adaptive output feedback control of robot manipulators using high gain observer. Int J Control 67(6):869–886

    Article  MATH  MathSciNet  Google Scholar 

  • Lewis FL (1996) Neural network control of robot manipulators. Intell Syst Appl 11(3):64–75

    Google Scholar 

  • Liang X, Huang X, Wang M, Zeng X (2010) Adaptive task-space tracking control of robots without task-space- and joint-space-velocity measurements. IEEE Trans Robot 26(4):733–742

    Article  Google Scholar 

  • Middleton RH, Goodwin GC (1988) Adaptive computed torque control for rigid link manipulators. Syst Control Lett 10:9–16

    Article  MATH  Google Scholar 

  • Niemeyer G, Slotine JJE (1991) Performance in adaptive manipulator control. Int J Robot Res 10(2):149–161

    Article  Google Scholar 

  • Ortega R, Spong MW (1989) Adaptive motion control of rigid robots: a tutorial. Automatica 25(6):877–888

    Article  MATH  MathSciNet  Google Scholar 

  • Ortega R, Loria A, Kelly R (1995) A semi-globally stable output feedback PI2D regulator for robot manipulators. IEEE Trans Autom Control 40(8):1432–1436

    Article  MATH  MathSciNet  Google Scholar 

  • Paden B, Panja R (1988) A globally asymptotically stable PD+ controller for robot manipulator. Int J Control 47(6):1697–1712

    Article  MATH  Google Scholar 

  • Sadegh N, Horowitz R (1990) Stability and robustness analysis of a class of adaptive controllers for robotic manipulators. Int J Robot Res 9(3):74–92

    Article  Google Scholar 

  • Slotine JJE (1985) The robust control of robot manipulators. Int J Robot Res 4(2):49–61

    Article  Google Scholar 

  • Slotine JJE, Li W (1987) On the adaptive control of robot manipulators. Int J Robot Res 6(3):49–59

    Article  Google Scholar 

  • Slotine JJE, Li W (1991) Applied nonlinear control. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Spong MW (1992) On the robust control of robot manipulators. IEEE Trans Autom Control 37(11):1782–1786

    Article  MATH  MathSciNet  Google Scholar 

  • Spong MW, Hutchinson S, Vidyasagar M (2006) Robot modeling and control. Wiley, New York

    Google Scholar 

  • Takegaki M, Arimoto S (1981) A new feedback method for dynamic control of manipulators. ASME J Dyn Syst Meas Control 103:119–125

    Article  MATH  Google Scholar 

  • Tomei P (1991) Adaptive PD controller for robot manipulators. IEEE Trans Robot Autom 7:565–570

    Article  MathSciNet  Google Scholar 

  • Wang H, Xie Y (2009) Prediction error based adaptive Jacobian tracking of robots with uncertain kinematics and dynamics. IEEE Trans Automat Control 54(12):2889–2894, art. no. 5332275

    Article  MathSciNet  Google Scholar 

  • Wang H, Liu YH, Zhou D (2007) Dynamic visual tracking for manipulators using an uncalibrated fixed camera. IEEE Trans Robot 23(3):610–617

    Article  Google Scholar 

  • Wen JT, Bayard D (1988) New class of control laws for robotic manipulators Part 2. Adaptive case. Int J Control 47(5):1387–1406

    Article  MATH  MathSciNet  Google Scholar 

  • Ziegler JG, Nichols NB (1942) Optimum settings for automatic controllers. ASME Trans 64:759–768

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien Chern Cheah .

Editor information

Editors and Affiliations

Appendices

Appendix 1

Preliminaries on control theories:

Consider the following nonlinear system:

$$ \dot{x}=f\left(x,t\right) $$
(109)

where x ∈ R n is a vector of state of the system and f (.) is a nonlinear function.

Definition A1

The equilibrium points of the system Eq. 109 are defined as the state vectors x e of x for which if at specific time t 0, x = x e, then x will remain unchanged for all t > t 0. In other words, at equilibrium points the state of the system satisfies f (x e ) = 0.

It is often important to know whether the equilibrium point is stable or not. In the following, a definition of stable equilibrium point is put forward:

Remark A1

It can be always assumed that the equilibrium point is zero by using change of variable y = x – x e .

Definition A2

The equilibrium point x e = 0 of the system Eq. 109 is said to be stable if for any ε > 0, there exists δ > 0 such that if ‖x(0) − 0‖ < δ, then ‖x(t) − 0‖ < ε for all t > 0. It can be mathematically represents as follows:

$$ \forall \varepsilon >0\kern0.36em \exists \delta >0,\kern0.36em if\kern0.24em \left\Vert x(0)-0\right\Vert <\delta \Rightarrow \left\Vert x(t)-0\right\Vert <\varepsilon \kern0.24em for\kern0.24em t>{t}_0. $$
(110)

To examine the stability of the equilibrium point, the Lyapunov theory can be utilized. The main advantage of the Lyapunov theory is that the stability of the system can be determined without solving the differential equations of the system. Moreover, the Lyapunov theory can be used to design controllers that stabilize nonlinear systems.

Before presenting the Lyapunov theory, a certain class of functions is introduced as follows:

Definition A3

A continuous function V : R n × R + → R is a locally positive definite function (lpdf) if for some ε > 0 and some continuous, the following conditions hold:

$$ \left\{\begin{array}{l}I:V\left(0,t\right)=0\\ {}II:V\left(x,t\right)>0\kern1em \forall x\in {B}_{\varepsilon },\forall t\ge 0\end{array}\right. $$
(111)

where B ε is a ball of size ε around the origin which is mathematically expressed as B ε = {x ∈ R n : ‖x‖ < ε}.

In addition, V is a positive definite function (pdf) if the condition (II) is true for all x ∈ R.

If in condition (II) V (x, t) ≥ 0, then V (x, t) is a (locally) positive semi-definite function.

Remark A2

If V (x) = x T Mx, where M is a real symmetric matrix, then V is a pdf if and only if M is a positive definite matrix.

Theorem A1

Lyapunov stability theorem: Suppose x e = 0 is an equilibrium point of the system Eq. 109. Let V(x, t) be a nonnegative function with derivative \( \dot{V} \) V along trajectories of the system dynamics:

$$ \frac{dV}{dt}=\frac{\partial V}{\partial t}\dot{x}=\frac{\partial V}{\partial t}f\left(x,t\right). $$
(112)
  1. (i)

    If V (x, t) is a locally positive definite function and \( \dot{V} \) is a locally positive semi-definite function in x and for all t, then the origin of the system is locally stable.

  2. (ii)

    If V (x, t) is a locally positive definite function and \( \dot{V} \) is a locally positive definite function in x and for all t, then the origin of the system is locally asymptotically stable.

  3. (iii)

    If V (x, t) is a positive definite function and \( \dot{V} \) is a positive definite function in x and for all t, then the origin of the system is globally asymptotically stable.

If the function V (x, t) exists in the above theorem, then it is called a Lyapunov function.

Remark A3

The Lyapunov stability theorem only provides sufficient conditions for the stability of nonlinear systems; hence, the failure of finding a Lyapunov function does not prove the instability of the nonlinear system

In the case that \( -\dot{V}\left(x,t\right) \) is a positive semi-definite function, the Lyapunov stability theorem cannot provide any information on the asymptotic stability of the system. To deal with the stability of nonlinear autonomous systems when \( -\dot{V}(x) \) is a positive semi-definite function, LaSalle’s invariance principle has been presented.

Lemma A1

LaSalle ’ s invariance principle : Let V : R n → R be a positive definite function such that \( \dot{V}(x)\le 0 \) in compact set Ω. Let D be the set of all points in Ω where \( \dot{V}(x)=0 \). Therefore, every solution of the system \( \dot{x}=f(x) \) starting in Ω approaches to the largest invariant set inside D. In particular, if D contains no trajectories other than x = 0, then 0 is locally asymptotically stable.

LaSalle’s invariance principle enables one to conclude asymptotic stability only for autonomous systems. For non-autonomous systems, Barbalat’s lemma can be used.

Lemma A2

Barbalat ’ s lemma : If a function V (t, x) satisfies the following conditions:

  1. (i)

    V(x, t) is lower bounded.

  2. (ii)

    \( \dot{V}\left(x,t\right) \) is negative semi-definite.

  3. (iii)

    \( \dot{V}\left(x,t\right) \) is uniformly continuous in time or equivalently \( \ddot{V}\left(t,x\right) \) is bounded. Then, \( \dot{V}\left(x,t\right) \) goes to zero as t → ∞.

Appendix 2

Parameters of dynamic Eq. 4 of the two-link robot manipulator which is depicted in Fig. 1:

Elements of inertia matrix M(q) are

$$ \begin{array}{l}{M}_{11}=\frac{4}{3}{M}_1{L}_{c1}^2+\frac{4}{3}{M}_2{L}_{c2}^2+{M}_2{L}_1^2+2{M}_2{L}_1{L}_{c2} \cos \left({q}_2\right)\\ {}{M}_{12}=\frac{4}{3}{M}_2{L}_{c2}^2+{M}_2{L}_1{L}_{c2} \cos \left({q}_2\right)\\ {}{M}_{21}=\frac{4}{3}{M}_2{L}_{c2}^2+{M}_2{L}_1{L}_{c2} \cos \left({q}_2\right)\\ {}{M}_{22}=\frac{4}{3}{M}_2{L}_{c2}^2.\end{array} $$
(113)

Elements of matrix \( C\left(q,\dot{q}\right) \) are given as

$$ \begin{array}{l}\kern-0.2em {C}_{11}=-{M}_2{L}_1{L}_{c2}{\dot{q}}_2 \sin \left({q}_2\right)\\ {}{C}_{12}=-{M}_2{L}_1{L}_{c2}\left[{\dot{q}}_1+{\dot{q}}_2\right] \sin \left({q}_2\right)\\ {}{C}_{21}={M}_2{L}_1{L}_{c2}{\dot{q}}_1 \sin \left({q}_2\right)\\ {}{C}_{22}=0.\end{array} $$
(114)

Elements of gravitational force matrix are

$$ \begin{array}{l}{g}_1=\left({M}_1{L}_{c1}+{M}_2{L}_1\right)\mathfrak{g} \cos \left({q}_1\right)+{M}_2{L}_{c2}\mathfrak{g} \cos \left({q}_1+{q}_2\right)\\ {}{g}_2={M}_2{L}_{c2}\mathfrak{g} \cos \left({q}_1+{q}_2\right)\end{array} $$
(115)

where \( \mathfrak{g} \) is the gravity due to acceleration.

Appendix 3

Part of the proof of the task-space control law Eq. 55:

Differentiating the Lyapunov candidate V (expressed in Eq. 58) with respect to time gives

$$ \begin{array}{c}\dot{V}={\dot{q}}^TM(q)\ddot{q}+\frac{1}{2}{\dot{q}}^T\dot{M}(q)\dot{q}+\alpha {\ddot{q}}^TM(q){\widehat{J}}^{\dagger }(q)s\left(\tilde{x}\right)\\ {}+\alpha {\dot{q}}^T\dot{M}(q){\widehat{J}}^{\dagger }(q)s\left(\tilde{x}\right)+\alpha {\dot{q}}^TM(q){\dot{\widehat{J}}}^{\dagger }(q)s\left(\tilde{x}\right)\\ {}+\alpha {\dot{q}}^TM(q){\widehat{J}}^{\dagger }(q)\dot{s}\left(\tilde{x}\right)+{\dot{x}}^T{K}_ps\left(\tilde{x}\right)+\alpha {\dot{x}}^T{K}_vs\left(\tilde{x}\right).\end{array} $$
(116)

Substituting the closed-loop Eq. 57 into Eq. 116, using property 2 and simplifying, yields

$$ \begin{array}{c}\dot{V}=-\kern0.3em {\dot{q}}^TD(q)\dot{q}-{\dot{q}}^T{\widehat{J}}^T(q)\left({K}_ps\left(\tilde{x}\right)+{K}_v\dot{x}\right)\\ {}-\kern0.3em \alpha {\dot{q}}^T\left\{C\left(q,\dot{q}\right)+D(q)-\dot{M}(q)\right\}{\widehat{J}}^{\dagger }(q)s\left(\tilde{x}\right)\\ {}-\kern0.3em \alpha s{\left(\tilde{x}\right)}^T{K}_ps\left(\tilde{x}\right)+\alpha {\dot{q}}^TM(q){\dot{\widehat{J}}}^{\dagger }(q)s\left(\tilde{x}\right)\\ {}+\kern0.3em \alpha {\dot{q}}^TM(q){\widehat{J}}^{\dagger }(q)\dot{s}\left(\tilde{x}\right)+{\dot{x}}^T{K}_ps\left(\tilde{x}\right).\end{array} $$
(117)

Using Eq. 14, \( \dot{V} \) can be written as follows:

$$ \begin{array}{c}\dot{V}=-{\dot{q}}^T\left\{{\widehat{J}}^T(q){K}_vJ(q)+D(q)\right\}\dot{q}-{\dot{q}}^T\left\{{\widehat{J}}^T(q)-{J}^T(q)\right\}{K}_ps\left(\tilde{x}\right)\\ {}\kern0.96em -\alpha {\dot{q}}^T\left\{C\left(q,\dot{q}\right)+D(q)-\dot{M}(q)\right\}{\widehat{J}}^{\dagger }(q)s\left(\tilde{x}\right)-\alpha s{\left(\tilde{x}\right)}^T{K}_ps\left(\tilde{x}\right)\\ {}\kern0.96em +\alpha {\dot{q}}^TM(q){\dot{\widehat{J}}}^{\dagger }(q)s\left(\tilde{x}\right)+\alpha {\dot{q}}^TM(q){\widehat{J}}^{\dagger }(q)\dot{s}\left(\tilde{x}\right).\end{array} $$
(118)

Since \( s\left(\tilde{x}\right) \) is bounded, there exist constants c 0 > 0 and c 1 > 0 so that

$$ \begin{array}{c}-\alpha {\dot{q}}^T\left\{C\left(q,\dot{q}\right)+D(q)-\dot{M}(q)\right\}{\widehat{J}}^{\dagger }(q)s\left(\tilde{x}\right)+\alpha {\dot{q}}^TM(q){\dot{\widehat{J}}}^{\dagger }(q)s\left(\tilde{x}\right)\\ {}+\alpha {\dot{q}}^TM(q){\widehat{J}}^{\dagger }(q)\dot{s}\left(\tilde{x}\right)\le \alpha {c}_0{\left\Vert \dot{q}\right\Vert}^2+\alpha {c}_1{\left\Vert s\left(\tilde{x}\right)\right\Vert}^2.\end{array} $$
(119)

Substituting inequality Eq. 119 into Eq. 118 yields

$$ \begin{array}{c}\dot{V}\kern0.48em \le \kern0.6em -{\dot{q}}^T\left\{{\widehat{J}}^T(q){K}_vJ(q)+D(q)-\alpha {c}_0I\right\}\dot{q}-\alpha s{\left(\tilde{x}\right)}^T\left({K}_p-{c}_1I\right)s\left(\tilde{x}\right)\\ {}-{\dot{q}}^T\left\{{\widehat{J}}^T(q)-{J}^T(q)\right\}{K}_ps\left(\tilde{x}\right).\end{array} $$
(120)

Let \( \tilde{J}(q) \) be the Jacobian estimation error which is defined as \( \tilde{J}(q)=J(q)-\widehat{J}(q) \). Hence, Eq. 120 can be written with respect to J(q) and \( \tilde{J}(q) \) as follows:

$$ \begin{array}{c}\dot{V}\kern0.48em \le \kern0.6em -{\dot{q}}^T\left\{{J}^T(q){K}_vJ(q)+D(q)-\alpha {c}_0I\right\}\dot{q}-\alpha s{\left(\tilde{x}\right)}^T\left({K}_p-{c}_1I\right)s\left(\tilde{x}\right)\\ {}+{\dot{q}}^T{\tilde{J}}^T(q){K}_vJ(q)\dot{q}+{\dot{q}}^T{\tilde{J}}^T(q){K}_ps\left(\tilde{x}\right).\end{array} $$
(121)

Since the Jacobian matrix contains trigonometric functions of q, ‖J(q)‖ ≤ b J and Eq. 121 can be rewritten as

$$ \begin{array}{c}\dot{V}\le \kern0.36em -\left\{{\lambda}_{\min}\left({J}^T(q){K}_vJ(q)+D(q)\right)-\gamma {b}_J{\lambda}_{\max}\left({K}_v\right)-\alpha {c}_0\right\}{\left\Vert \dot{q}\right\Vert}^2\\ {}\kern1.32em +\gamma {\lambda}_{\max}\left({K}_p\right)\left\Vert s\left(\tilde{x}\right)\right\Vert \left\Vert \dot{q}\right\Vert -\alpha \left({\lambda}_{\min}\left({K}_p\right)-{c}_1\right){\left\Vert s\left(\tilde{x}\right)\right\Vert}^2\end{array} $$
(122)

where γ is defined in Eq. 56. Since

$$ 2\left\Vert s\left(\tilde{x}\right)\right\Vert \left\Vert \dot{q}\right\Vert \le {\left\Vert s\left(\tilde{x}\right)\right\Vert}^2+\kern0.36em {\left\Vert \dot{q}\right\Vert}^2, $$
(123)

therefore, Eq. 122 is simplified as follows:

$$ \begin{array}{c}\dot{V}\kern0.36em \le \kern0.36em -\left\{{\lambda}_{\min}\left({J}^T(q){K}_vJ(q)+D(q)\right)-\gamma {b}_J{\lambda}_{\max}\left({K}_v\right)-\frac{1}{2}\gamma {\lambda}_{\max}\left({K}_p\right)-\alpha {c}_0\right\}{\left\Vert \dot{q}\right\Vert}^2\\ {}\kern1.44em -\left(\alpha {\lambda}_{\min}\left({K}_p\right)-\frac{1}{2}\gamma {\lambda}_{\max}\left({K}_p\right)-\alpha {c}_1\right){\left\Vert s\left(\tilde{x}\right)\right\Vert}^2.\end{array} $$
(124)

Equation 124 can be written as follows:

$$ \begin{array}{c}\dot{V}\kern0.36em \le \kern0.48em -\left\{{\lambda}_{\max}\left({K}_v\right)\left({\delta}_1-\frac{\gamma }{2}\left({\delta}_2+2{b}_J\right)\right)-\alpha {c}_0\right\}{\left\Vert \dot{q}\right\Vert}^2\\ {}\kern1.56em -\left({\lambda}_{\max}\left({K}_p\right)\left(\alpha {\delta}_3-\frac{\gamma }{2}\right)-\alpha {c}_1\right){\left\Vert s\left(\tilde{x}\right)\right\Vert}^2\end{array} $$
(125)

such that

$$ \begin{array}{l}{\delta}_1=\frac{\lambda_{\min}\left[{J}^T(q){K}_vJ(q)+D(q)\right]}{\lambda_{\max}\left({K}_v\right)}\\ {}{\delta}_2=\frac{\lambda_{\max}\left({K}_p\right)}{\lambda_{\max}\left({K}_v\right)}\\ {}{\delta}_3=\frac{\lambda_{\min}\left({K}_p\right)}{\lambda_{\max}\left({K}_p\right)}.\end{array} $$
(126)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this entry

Cite this entry

Cheah, C.C., Haghighi, R. (2015). Motion Control. In: Nee, A. (eds) Handbook of Manufacturing Engineering and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4670-4_93

Download citation

Publish with us

Policies and ethics