Trajectory Planning

Reference work entry


Trajectory planning consists in finding a time series of successive joint angles that allows moving a robot from a starting configuration towards a goal configuration, in order to achieve a task, such as grabbing an object from a conveyor belt and placing it on a shelf. This trajectory must respect given constraints: for instance, the robot should not collide with the environment; the joint angles, velocities, accelerations, or torques should be within specified limits, etc. Next, if several trajectories are possible, one should choose the one that optimizes a certain objective, such as the trajectory execution time or energy consumption. This chapter reviews methods to plan trajectories with constraints and optimization objectives relevant to industrial robot manipulators.




  1. Bobrow J (1988) Optimal robot plant planning using the minimum-time criterion. IEEE J Robot Autom 4(4):443–450CrossRefGoogle Scholar
  2. Bobrow J, Dubowsky S, Gibson J (1985) Time-optimal control of robotic manipulators along specified paths. Int J Robot Res 4(3):3–17CrossRefGoogle Scholar
  3. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269–271CrossRefMATHMathSciNetGoogle Scholar
  4. Donald B, Xavier P, Canny J, Reif J (1993) Kinodynamic motion planning. J Assoc Comput Mach 40(5):1048–1066CrossRefMATHMathSciNetGoogle Scholar
  5. Geering HP, Guzzella L, Hepner SA, Onder CH (1985) Time-optimal motions of robots in assembly tasks. In: Proceedings of the 24th IEEE conference on decision and control, vol 24. IEEE, Fort Lauderdale, pp 982–989Google Scholar
  6. Geraerts R, Overmars M (2007) Creating high-quality paths for motion planning. Int J Robot Res 26(8):845–863CrossRefGoogle Scholar
  7. Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern 4(2):100–107CrossRefGoogle Scholar
  8. Hauser K (2013) Fast interpolation and time-optimization on implicit contact submanifolds. In: Proceedings of the robotics: science and systems, Berlin, 2013Google Scholar
  9. Hauser K, Ng-Thow-Hing V (2010) Fast smoothing of manipulator trajectories using optimal bounded-acceleration shortcuts. In: Proceedings of the IEEE international conference on robotics and automation, 2010. Anchorage, pp 2493–2498Google Scholar
  10. Hsu D, Kindel R, Latombe J-C, Rock S (2002) Randomized kinodynamic motion planning with moving obstacles. Int J Robot Res 21(3):233–255CrossRefGoogle Scholar
  11. Hwang YK, Ahuja N (1992) Gross motion planning – a survey. ACM Comput Surv (CSUR) 24(3):219–291CrossRefGoogle Scholar
  12. Karaman S, Frazzoli E (2011) Sampling-based algorithms for optimal motion planning. Int J Robot Res 30(7):846–894CrossRefGoogle Scholar
  13. Kavraki L, Svestka P, Latombe J, Overmars M (1996) Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans Robot Autom 12(4):566–580CrossRefGoogle Scholar
  14. Khatib O (1986) Real-time obstacle avoidance for manipulators and mobile robots. Int J Robot Res 5(1):90–98CrossRefMathSciNetGoogle Scholar
  15. Kuffner J, LaValle S (2000) RRT-connect: an efficient approach to single-query path planning. In: Proceedings of the IEEE international conference on robotics and automation, San Francisco, 2000Google Scholar
  16. Kuffner J, Kagami S, Nishiwaki K, Inaba M, Inoue H (2002) Dynamically-stable motion planning for humanoid robots. Auton Robot 12(1):105–118CrossRefMATHGoogle Scholar
  17. Kunz T, Stilman M (2012) Time-optimal trajectory generation for path following with bounded acceleration and velocity. Robot Sci Syst 8:09–13Google Scholar
  18. Lavalle SM (1998) Rapidly-exploring random trees: a new tool for path planning. Technical report 98–11, Iowa State UniversityGoogle Scholar
  19. LaValle S (2006) Planning algorithms. Cambridge University Press, CambridgeCrossRefMATHGoogle Scholar
  20. LaValle S, Kuffner J (2001) Randomized kinodynamic planning. Int J Robot Res 20(5):378–400CrossRefGoogle Scholar
  21. LaValle SM, Branicky MS, Lindemann SR (2004) On the relationship between classical grid search and probabilistic roadmaps. Int J Robot Res 23(7–8):673–692CrossRefGoogle Scholar
  22. Lozano-Perez T (1983) Spatial planning: a configuration space approach. IEEE Trans Comput 100(2):108–120CrossRefMathSciNetGoogle Scholar
  23. Meier E-B, Ryson AE (1990) Efficient algorithm for time-optimal control of a two-link manipulator. J Guid Control Dyn 13(5):859–866CrossRefMATHGoogle Scholar
  24. Pfeiffer F, Johanni R (1987) A concept for manipulator trajectory planning. IEEE Trans Robot Autom 3(2):115–123CrossRefGoogle Scholar
  25. Pham Q-C (2012) Planning manipulator trajectories under dynamics constraints using minimum-time shortcuts. In: Proceedings of the second IFToMM ASIAN conference on mechanism and machine science, Tokyo, 2012Google Scholar
  26. Pham Q-C (2013) Characterizing and addressing dynamic singularities in the time-optimal path parameterization algorithm. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, Tokyo, 2013Google Scholar
  27. Pham Q-C, Caron S, Nakamura Y (2013) Kinodynamic planning in the configuration space via velocity interval propagation. In: Proceedings of the robotics: science and system, Berlin, 2013Google Scholar
  28. Shiller Z, Dubowsky S (1989) Robot path planning with obstacles, actuator, gripper, and payload constraints. Int J Robot Res 8(6):3–18CrossRefGoogle Scholar
  29. Shiller Z, Dubowsky S (1991) On computing the global time-optimal motions of robotic manipulators in the presence of obstacles. IEEE Trans Robot Autom 7(6):785–797CrossRefGoogle Scholar
  30. Shiller Z, Gwo Y (1991) Dynamic motion planning of autonomous vehicles. IEEE Trans Robot Autom 7(2):241–249CrossRefGoogle Scholar
  31. Shiller Z, Lu H (1992) Computation of path constrained time optimal motions with dynamic singularities. J Dyn Syst Meas Control 114:34CrossRefMATHGoogle Scholar
  32. Shin K, McKay N (1985) Minimum-time control of robotic manipulators with geometric path constraints. IEEE Trans Autom Control 30(6):531–541CrossRefMATHGoogle Scholar
  33. Slotine J, Yang H (1989) Improving the efficiency of time-optimal path-following algorithms. IEEE Trans Robot Autom 5(1):118–124CrossRefGoogle Scholar
  34. Verscheure D, Demeulenaere B, Swevers J, De Schutter J, Diehl M (2009) Time-optimal path tracking for robots: a convex optimization approach. IEEE Trans Autom Control 54(10):2318–2327CrossRefGoogle Scholar
  35. Yang H, Slotine J (1994) Fast algorithms for near-minimum-time control of robot manipulators. Int J Robot Res 13(6):521–532CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations