Trajectory Planning

Reference work entry

Abstract

Trajectory planning consists in finding a time series of successive joint angles that allows moving a robot from a starting configuration towards a goal configuration, in order to achieve a task, such as grabbing an object from a conveyor belt and placing it on a shelf. This trajectory must respect given constraints: for instance, the robot should not collide with the environment; the joint angles, velocities, accelerations, or torques should be within specified limits, etc. Next, if several trajectories are possible, one should choose the one that optimizes a certain objective, such as the trajectory execution time or energy consumption. This chapter reviews methods to plan trajectories with constraints and optimization objectives relevant to industrial robot manipulators.

Keywords

Torque 

References

  1. Bobrow J (1988) Optimal robot plant planning using the minimum-time criterion. IEEE J Robot Autom 4(4):443–450CrossRefGoogle Scholar
  2. Bobrow J, Dubowsky S, Gibson J (1985) Time-optimal control of robotic manipulators along specified paths. Int J Robot Res 4(3):3–17CrossRefGoogle Scholar
  3. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269–271CrossRefMATHMathSciNetGoogle Scholar
  4. Donald B, Xavier P, Canny J, Reif J (1993) Kinodynamic motion planning. J Assoc Comput Mach 40(5):1048–1066CrossRefMATHMathSciNetGoogle Scholar
  5. Geering HP, Guzzella L, Hepner SA, Onder CH (1985) Time-optimal motions of robots in assembly tasks. In: Proceedings of the 24th IEEE conference on decision and control, vol 24. IEEE, Fort Lauderdale, pp 982–989Google Scholar
  6. Geraerts R, Overmars M (2007) Creating high-quality paths for motion planning. Int J Robot Res 26(8):845–863CrossRefGoogle Scholar
  7. Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern 4(2):100–107CrossRefGoogle Scholar
  8. Hauser K (2013) Fast interpolation and time-optimization on implicit contact submanifolds. In: Proceedings of the robotics: science and systems, Berlin, 2013Google Scholar
  9. Hauser K, Ng-Thow-Hing V (2010) Fast smoothing of manipulator trajectories using optimal bounded-acceleration shortcuts. In: Proceedings of the IEEE international conference on robotics and automation, 2010. Anchorage, pp 2493–2498Google Scholar
  10. Hsu D, Kindel R, Latombe J-C, Rock S (2002) Randomized kinodynamic motion planning with moving obstacles. Int J Robot Res 21(3):233–255CrossRefGoogle Scholar
  11. Hwang YK, Ahuja N (1992) Gross motion planning – a survey. ACM Comput Surv (CSUR) 24(3):219–291CrossRefGoogle Scholar
  12. Karaman S, Frazzoli E (2011) Sampling-based algorithms for optimal motion planning. Int J Robot Res 30(7):846–894CrossRefGoogle Scholar
  13. Kavraki L, Svestka P, Latombe J, Overmars M (1996) Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans Robot Autom 12(4):566–580CrossRefGoogle Scholar
  14. Khatib O (1986) Real-time obstacle avoidance for manipulators and mobile robots. Int J Robot Res 5(1):90–98CrossRefMathSciNetGoogle Scholar
  15. Kuffner J, LaValle S (2000) RRT-connect: an efficient approach to single-query path planning. In: Proceedings of the IEEE international conference on robotics and automation, San Francisco, 2000Google Scholar
  16. Kuffner J, Kagami S, Nishiwaki K, Inaba M, Inoue H (2002) Dynamically-stable motion planning for humanoid robots. Auton Robot 12(1):105–118CrossRefMATHGoogle Scholar
  17. Kunz T, Stilman M (2012) Time-optimal trajectory generation for path following with bounded acceleration and velocity. Robot Sci Syst 8:09–13Google Scholar
  18. Lavalle SM (1998) Rapidly-exploring random trees: a new tool for path planning. Technical report 98–11, Iowa State UniversityGoogle Scholar
  19. LaValle S (2006) Planning algorithms. Cambridge University Press, CambridgeCrossRefMATHGoogle Scholar
  20. LaValle S, Kuffner J (2001) Randomized kinodynamic planning. Int J Robot Res 20(5):378–400CrossRefGoogle Scholar
  21. LaValle SM, Branicky MS, Lindemann SR (2004) On the relationship between classical grid search and probabilistic roadmaps. Int J Robot Res 23(7–8):673–692CrossRefGoogle Scholar
  22. Lozano-Perez T (1983) Spatial planning: a configuration space approach. IEEE Trans Comput 100(2):108–120CrossRefMathSciNetGoogle Scholar
  23. Meier E-B, Ryson AE (1990) Efficient algorithm for time-optimal control of a two-link manipulator. J Guid Control Dyn 13(5):859–866CrossRefMATHGoogle Scholar
  24. Pfeiffer F, Johanni R (1987) A concept for manipulator trajectory planning. IEEE Trans Robot Autom 3(2):115–123CrossRefGoogle Scholar
  25. Pham Q-C (2012) Planning manipulator trajectories under dynamics constraints using minimum-time shortcuts. In: Proceedings of the second IFToMM ASIAN conference on mechanism and machine science, Tokyo, 2012Google Scholar
  26. Pham Q-C (2013) Characterizing and addressing dynamic singularities in the time-optimal path parameterization algorithm. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, Tokyo, 2013Google Scholar
  27. Pham Q-C, Caron S, Nakamura Y (2013) Kinodynamic planning in the configuration space via velocity interval propagation. In: Proceedings of the robotics: science and system, Berlin, 2013Google Scholar
  28. Shiller Z, Dubowsky S (1989) Robot path planning with obstacles, actuator, gripper, and payload constraints. Int J Robot Res 8(6):3–18CrossRefGoogle Scholar
  29. Shiller Z, Dubowsky S (1991) On computing the global time-optimal motions of robotic manipulators in the presence of obstacles. IEEE Trans Robot Autom 7(6):785–797CrossRefGoogle Scholar
  30. Shiller Z, Gwo Y (1991) Dynamic motion planning of autonomous vehicles. IEEE Trans Robot Autom 7(2):241–249CrossRefGoogle Scholar
  31. Shiller Z, Lu H (1992) Computation of path constrained time optimal motions with dynamic singularities. J Dyn Syst Meas Control 114:34CrossRefMATHGoogle Scholar
  32. Shin K, McKay N (1985) Minimum-time control of robotic manipulators with geometric path constraints. IEEE Trans Autom Control 30(6):531–541CrossRefMATHGoogle Scholar
  33. Slotine J, Yang H (1989) Improving the efficiency of time-optimal path-following algorithms. IEEE Trans Robot Autom 5(1):118–124CrossRefGoogle Scholar
  34. Verscheure D, Demeulenaere B, Swevers J, De Schutter J, Diehl M (2009) Time-optimal path tracking for robots: a convex optimization approach. IEEE Trans Autom Control 54(10):2318–2327CrossRefGoogle Scholar
  35. Yang H, Slotine J (1994) Fast algorithms for near-minimum-time control of robot manipulators. Int J Robot Res 13(6):521–532CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations