Process of Laser Machining

  • George Chryssolouris
  • Panagiotis Stavropoulos
  • Konstantinos Salonitis
Reference work entry


Laser machining belongs in the large family of material removing or machining processes. It is one of the most widely used thermal energy-based noncontact-type advanced machining processes. Laser beams can be used in many industrial applications, including machining, whereby it constitutes an alternative to traditional material removal techniques and can be used for the processing of a variety of materials, namely, metals, ceramics, glass, plastics, and composites. Laser machining is characterized by a number of advantages such as the absence of tool wear, tool breakage, chatter, machine deflection, and mechanically induced material damage, phenomena that are usually associated with traditional machining processes. However, as it is the case with all manufacturing processes, it is the optimum operating parameters that have to be determined. In the present chapter, the state of the art on the laser machining is being presented.


Material Removal Material Removal Rate Laser Cutting Laser Machine Laser Drilling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allen MP (2004) Introduction to molecular dynamics simulation. In: Computational soft matter: from synthetic polymers to proteins, Lecture Notes, NCI Series, vol. 23, Jülich, pp 1–28Google Scholar
  2. Choi WC, Chrysolouris G (1995) Analysis of the laser grooving and cutting processes. Phys D Appl 28:873–878. doi:10.1088/0022-3727/28/5/007CrossRefGoogle Scholar
  3. Chryssolouris G (1991) Laser machining: theory and practice, 1st edn. Springer, New York, 292pCrossRefGoogle Scholar
  4. Chryssolouris G (1994) 3-D laser machining: a perspective. In: Proceedings of the LANE’94, vol 1, Meisenbach BambergGoogle Scholar
  5. Chryssolouris G, Salonitis K (2011) Fundamentals of laser machining of composites. In: Hocheng H (ed) Machining technology for composite materials: principles and practice. Woodhead Publishing, CambridgeGoogle Scholar
  6. Chryssolouris G, Bredt J, Kordas S, Wilson E (1988a) Theoretical aspects of a laser machine tool. ASME J Eng Ind 110:65–70CrossRefGoogle Scholar
  7. Chryssolouris G, Bredt J, Kordas S, Wilson E (1988b) Theoretical aspects of a laser machine tool. J Eng Ind 110:65–70CrossRefGoogle Scholar
  8. Chryssolouris G, Anastasia N, Sheng P (1991) Three – dimensional laser machining for flexible manufacturing. In: Proceedings of symposium on intelligent design and manufacturing for prototyping, ASME Winter Annual Meeting, AtlantaGoogle Scholar
  9. Chryssolouris G, Anifantis N, Karagiannis S (1997) Laser assisted machining: an overview. Trans ASME J Manuf Sci Eng 119 (75th Anniversary Issue, November 1997):766–769Google Scholar
  10. Dausinger F (2000) Drilling of high quality micro holes. In: ICALEO’2000, Section B, Dearborn, USA, pp 1–10Google Scholar
  11. Firestone RF, Vesely Jr EJ (1988) High power laser beam machining of structural ceramics. In: ASME symposium of advanced ceramic materials, pp 215–227Google Scholar
  12. Goebel G, Havrilla D, Wetzig A, Beyer E (2000) Laser welding with long focal length optics. In: Proceedings of the 19th international congress on applications of lasers and electro-optics (ICALEO 2000), vol 91, Dearborn, USA, pp A/28–37Google Scholar
  13. Haferkamp H, Seebaum D (1994) Material removal on tool-steel using high power C02-lasers. In: Proceedings of the LANE’94, vol 1, Meisenbach Bamberg, pp 411–426Google Scholar
  14. Hecht J (1994) Star Wars laser gives surgeons a cleaner cut. New Scientist 144:24Google Scholar
  15. Holthaus M (2002) Pioneering lasers for rapid tooling. Manuf Eng 128(1/2002):47–51Google Scholar
  16. Hügel H, Teubner BG (1992) Strahlwerkzeug laser. Teubner, StuttgartCrossRefGoogle Scholar
  17. Hugel H, Rundlaff T, Wiedmaier M (1994) Laser processing integrated in machine tools-design, applications, economy. In: Proceedings of the LANE’94, vol I, Meisenbach Bamberg, pp 439–453Google Scholar
  18. Hutfiess J, Glasmacher M, Precher H-J, Geiger M (1995) Laser beam microprocessing of Three-dimensional circuit boards. In: Proceedings ISEMXJ, EPFL, Lausanne, pp 721–732Google Scholar
  19. Katsuki A, Onikura H, Sajima T, Machida S, Oda K (1994) Development of a deep-hole, laser boring tool – the boring of workpieces with a thin wall and an inclined prebored hole. Precis Eng J ASPE 16(4):296–301CrossRefGoogle Scholar
  20. Kautek W, Kruger J, Lenzner M, Sartania S, Spielmann C, Krausz F (1996) Laser ablation of dielectrics with pulse durations between 20 f. and 3ps. Appl Phys Lett 69:3146–3148CrossRefGoogle Scholar
  21. Kelly R, Miotell A (1994) Laser-pulse sputtering of atoms and molecules part II. Recondensation effects. Nucl Instrum Method Phys Res B 91:682–691CrossRefGoogle Scholar
  22. Kempfer L (1995) Laser design time cut 50 %. Comput Aided Eng 14(8):1–8Google Scholar
  23. Kikuchi K, Maeda R, Kawaguchi Y (1995) Micromachining with laser beam of glasses and diamond-like carbon. In: Proceedings ISEMXJ, EPFL, Lausanne, pp 757–764Google Scholar
  24. Klocke F, Zaboklicki A (1998) Laser assisted turning of ceramics. In: Machining of ceramics and composites. Marcel Dekker, New York, pp 551–574Google Scholar
  25. Lei S, Shin YC, Incropera FP (2000) Deformation mechanisms and constitutive modeling of silicon nitride undergoing laser assisted machining. Int J Mach Tool Manuf 40:2213–2233CrossRefGoogle Scholar
  26. Leidinger D, Penz A, Schuocker D (1995) Improved manufacturing processes with high power lasers. Infrared Phys Technol 36(1):251–266CrossRefGoogle Scholar
  27. LIA (2001) Hole drilling. In: Ready JF (ed) Handbook of laser materials processing. Magnolia Publishing, OrlandoGoogle Scholar
  28. Meijer J (2004) Laser beam machining (LBM), state of the art and new opportunities. J Mater Process Technol 149(1–3):2–17CrossRefGoogle Scholar
  29. Nolte S, Momma C, Jacobs H, Tunnemann A, Chichkov BN, Wellegehausen B, Welling H (1997) Ablation of metals by ultrashort laser pulses. J Opt Soc Am B 14:2716CrossRefGoogle Scholar
  30. Nolte S, Momma C, Kamlage G, Ostendorf A, Fallnich C, von Alvensleben F, Welling H (1999) Polarizatiοn effects in ultrashort-pulse laser drilling. Appl Phys A 68:563–567CrossRefGoogle Scholar
  31. Ogura G, Angell J, Wall D (1998) Applications test potential of laser micromachining. Laser Focus World 34:117–123Google Scholar
  32. Poprawe R, Klein R, Abram L (1995) Laser technology in processing of coated sheets. Stahl Eisen 115(7):31–37Google Scholar
  33. Rebro PA, Shin YC, Incropera FP (2002) Laser assisted machining of reaction sintered mullite ceramics. J Manuf Sci Eng 124:875–885CrossRefGoogle Scholar
  34. Rieth M (2000) Molecular dynamics calculations for nanostructured systems. Ph.D. Thesis, University of Patras, School of Engineering, Engineering Science DepartmentGoogle Scholar
  35. Rozzi JC, Pfefferkorn FE, Shin YC, Incropera FP (2000) Experimental evaluation of the laser assisted machining of silicon nitride ceramics. ASME J Manuf Sci Eng 122:666–670CrossRefGoogle Scholar
  36. Salonitis K, Stournaras A, Tsoukantas G, Stavropoulos P, Chryssolouris G (2007) A theoretical and experimental investigation on limitations of pulsed laser drilling. J Mater Process Technol 183(1):96–103CrossRefGoogle Scholar
  37. Semerok A, Chaleard C, Detalle V, Lacour JL, Mauchien P, Meynadier P, Nouvellon C, Salle B, Palianov P, Perdix M, Petite G (1999) Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses. Appl Surf Sci 138/139:311–314CrossRefGoogle Scholar
  38. Staurt BC, Feit MD, Herman S, Rubenchik AM, Shore BW, Perry MD (1996) Nanosecond to femtosecond laser induced breakdown in dielectrics. Phys Rev B 53:1749–1761CrossRefGoogle Scholar
  39. Stavropoulos P, Chryssolouris G (2006) Nanomanufacturing processes and simulation: a critical review. In: Proceedings of the 4th international symposium on nanomanufacturing (ISNM), Cambridge, MA, pp 46–52Google Scholar
  40. Stavropoulos P, Chryssolouris G (2007) Molecular dynamics simulations of laser ablation: the Morse potential function approach. Int J Nanomanuf 1(6):736–750Google Scholar
  41. Stavropoulos P, Stournaras A, Salonitis K, Chryssolouris G (2010) Experimental and theoretical investigation of the ablation mechanisms during femtosecond laser machining. Int J Nanomanuf 6(1/2/3/4):55–65CrossRefGoogle Scholar
  42. Stavropoulos P, Efthymiou K, Chryssolouris G (2012) Investigation of the material removal efficiency during femtosecond laser machining. Procedia CIRP 3:471–476CrossRefGoogle Scholar
  43. Stournaras A, Salonitis K, Stavropoulos P, Chryssolouris G (2009a) Theoretical and experimental investigation of pulsed laser grooving process. Int J Adv Manuf Technol 44:114–124CrossRefGoogle Scholar
  44. Stournaras A, Stavropoulos P, Salonitis K, Chryssolouris G (2009b) An investigation of quality in CO2 laser cutting of aluminum. Cirp J Manuf Sci Technol 2(1):61–69CrossRefGoogle Scholar
  45. Stournaras A, Salonitis K, Chryssolouris G (2010) Optical emissions for monitoring of the percussion laser drilling process. Int J Adv Manuf Technol 46:589–603CrossRefGoogle Scholar
  46. Tsoukantas G, Salonitis K, Stavropoulos P, Chryssolouris G (2002) An overview of 3D Laser materials’ processing concepts. In: Proceedings of SPIE 3rd GR-I international conference on new laser technologies and applications, Greece, pp 224–228Google Scholar
  47. Tsoukantas G, Salonitis K, Stournaras A, Stavropoulos P, Chryssolouris G (2007) On optical design limitations of generalized two-mirror remote beam delivery laser systems: the case of remote welding. Int J Adv Manuf Technol 32:932–941CrossRefGoogle Scholar
  48. von der Linde D, Sokolowsi TK (2000) The physical mechanisms of short pulse laser ablation. Appl Surf Sci 154–155:1–10CrossRefGoogle Scholar
  49. Wang Y, Yang LJ, Wang NJ (2002) An investigation of laser assisted machining of Al2O3 particle reinforced aluminum matrix composite. J Mater Process Technol 129(1–3):268–272CrossRefGoogle Scholar
  50. Westkaemper E (1995) Grinding assisted by Nd-YAG lasers. CIRP Ann 44:317–320CrossRefGoogle Scholar
  51. Ziegert JC, Mize CD (1994) The laser ball bar – a new instrument for machine tool metrology. Precis Eng J ASPE 16(4):259–267CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • George Chryssolouris
    • 1
  • Panagiotis Stavropoulos
    • 1
  • Konstantinos Salonitis
    • 2
  1. 1.Laboratory for Manufacturing Systems and Automation (LMS), Department of Mechanical Engineering and AeronauticsUniversity of PatrasPatrasGreece
  2. 2.Manufacturing and MaterialsCranfield UniversityCranfield, BedfordshireUK

Personalised recommendations