Skip to main content

Plasma-Based Nanomanufacturing Under Atmospheric Pressure

  • Reference work entry
  • First Online:
Handbook of Manufacturing Engineering and Technology
  • 25k Accesses

Abstract

Atmospheric-pressure plasma manufacturing is a very promising technique fabricate optical components and substrates for electronic devices with high form accuracy and high efficiency. The thickness correction of SOI and quartz crystal wafers by numerically controlled atmospheric-pressure plasma etching, which named numerically controlled plasma chemical vaporization machining (NC-PCVM), enabled us to obtain thickness uniformity with nanometer-level accuracy without introducing subsurface electronic defects. A numerically controlled sacrificial oxidation process using a multielectrode array system demonstrated its potential for realizing the high-throughput thickness correction of SOI wafers. A 4H-SiC (0001) surface, which is a difficult-to-machine material because of its hardness and chemical inertness, was processed by plasma-assisted dry polishing using a CeO2 abrasive, and an atomically smooth step and terrace structure without lattice strain was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adan AO, Kaneko S, Naka T, Urabe D, Higashi K, Kagisawa A (1996) Channel-drain lateral profile engineering for advanced CMOS on ultra-thin SOI technology. IEEE Int SOI Conf :100–101

    Google Scholar 

  • Azuma K, Kishi A, Tanigawa M, Kaneko S, Naka T, Ishihama A, Iguchi K, Sakiyama K (1995) Application of Ti salicide process on ultra-thin SIMOX wafer. IEEE Int SOI Conf :30–31

    Google Scholar 

  • Hornetz B, Michel H-J, Halbritter J (1994) ARXPS studies of SiO2-SiC interfaces and oxidation of 6H SiC single crystal Si-(001) and C-(001) surfaces. J Mater Res 9:3088–3094

    Article  Google Scholar 

  • International Technology Roadmap for Semiconductors (2011) Edition, Table FEP10. http://www.itrs.net/Links/2011ITRS/2011Chapters/2011FEP.pdf

  • Kamisaka S, Yoshinaga K, Sano Y, Mimura H, Matsuyama S, Yamauchi K (2010) Improvement of thickness uniformity of silicon on insulator layer by numerically controlled sacrificial oxidation using atmospheric-pressure plasma with electrode array system. Jpn J Appl Phys 49:08JJ04

    Article  Google Scholar 

  • Lucca DA, Herrmann K, Klopfstein MJ (2010) Nanoindentation: measuring methods and applications. Ann CIRP 59:803–819

    Article  Google Scholar 

  • Mori Y, Yamamura K, Sano Y (2000a) The study of fabrication of the X-ray mirror by numerically controlled plasma chemical vaporization machining: development of the machine for the X-ray mirror fabrication. Rev Sci Instrum 71:4620–4626

    Article  Google Scholar 

  • Mori Y, Yamauchi K, Yamamura K, Sano Y (2000b) Development of plasma chemical vaporization machining. Rev Sci Instrum 71:4627–4632

    Article  Google Scholar 

  • Mori Y, Yamamura K, Sano Y (2004) Thinning of silicon-on-insulator wafers by numerically controlled plasma chemical vaporization machining. Rev Sci Instrum 75:942–946

    Article  Google Scholar 

  • Nagaura Y, Yokomizo S (1999) Manufacturing method of high frequency quartz oscillators over 1 GHz. In: Proceedings of the 1999 I.E. international frequency control symposium Besancon, France, pp 425–428

    Google Scholar 

  • Neslen CL, Mitchel WC, Hengehold RL (2001) Effects of process parameter variations on the removal rate in chemical mechanical polishing of 4H-SiC. J Electroact Mater 30:1271–1275

    Article  Google Scholar 

  • Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583

    Article  Google Scholar 

  • Saddow SE, Schattner TE, Brown J, Grazulis L, Mahalingam K, Landis G, Bertke R, Mitchel WC (2001) Effects of substrate surface preparation on chemical vapor deposition growth of 4H-SiC epitaxial layers. J Electroact Mater 30:228–234

    Article  Google Scholar 

  • Sano Y, Yamamura K, Mimura H, Yamauchi K, Mori Y (2007) Fabrication of ultrathin and highly uniform silicon on insulator by numerically controlled plasma chemical vaporization machining. Rev Sci Instrum 78:086102

    Article  Google Scholar 

  • Sano Y, Masuda T, Mimura H, Yamauchi K (2008a) Ultraprecision finishing technique by numerically controlled sacrificial oxidation. J Cryst Growth 310:2173–2177

    Article  Google Scholar 

  • Sano Y, Masuda T, Kamisaka S, Mimura H, Matsuyama S, Yamauchi K (2008b) Improvement of thickness uniformity of SOI by numerically controlled sacrificial oxidation using atmospheric-pressure plasma. IEEE Int SOI Conf :165–166

    Google Scholar 

  • Sano Y, Kamisaka S, Yoshinaga K, Mimura H, Matsuyama S, Yamauchi K (2010) Numerically controlled sacrificial plasma oxidation using array of electrodes for improving thickness uniformity of SOI. IEEE Int SOI Conf :68–69

    Google Scholar 

  • Shorey AB, Kwong KM, Johnson KM, Jacobs SD (2000) Nanoindentation hardness of particles used in magnetorheological finishing (MRF). Appl Opt 39:5194–5204

    Article  Google Scholar 

  • Ueda M, Shibahara M, Zettsu N, Yamamura K (2010) Effect of substrate heating in thickness correction of quartz crystal wafer by plasma chemical vaporization machining. Key Eng Mater 447–448:218–222

    Article  Google Scholar 

  • Yamamura K, Shimada S, Mori Y (2008) Damage-free improvement of thickness uniformity of quartz crystal wafer by plasma chemical vaporization machining. Ann CIRP 59:567–570

    Article  Google Scholar 

  • Yamamura K, Morikawa T, Ueda M, Nagano M, Zettsu N, Shibahara M (2009) High efficient damage-free correction of thickness distribution of quartz crystal wafer by atmospheric pressure plasma etching. IEEE Trans Ultrason Ferroelectr Freq Control 56:1128–1130

    Article  Google Scholar 

  • Yamamura K, Takiguchi T, Ueda M, Deng H, Hattori NA, Zettsu N (2011) Plasma assisted polishing of single crystal SiC for obtaining atomically flat strain-free surface. Ann CIRP 60:571–574

    Article  Google Scholar 

  • Zhou L, Audurier V, Pirouz P (1997) Chemomechanical polishing of silicon carbide. J Electrochem Soc 144:L161–L163

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuya Yamamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this entry

Cite this entry

Yamamura, K., Sano, Y. (2015). Plasma-Based Nanomanufacturing Under Atmospheric Pressure. In: Nee, A. (eds) Handbook of Manufacturing Engineering and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4670-4_68

Download citation

Publish with us

Policies and ethics