Micro Tools Fabrication by Focused Ion Beam Technology

  • Wei WuEmail author
  • Wanli Li
  • Fengzhou Fang
  • Zong Wei Xu
Reference work entry


With the trends towards miniaturization, micro-systems, sophisticated devices, and miniaturized three-dimensional (3D) structures are in great demands, which stimulate the development of micro-/nano-manufacturing technologies. Micro-/nano-cutting is one of the most important methods in micro-/nano-manufacturing and it is capable of fabricating microstructures on various materials. However, research and development of the micro-cutting tools largely determined the progress of micro-/nano-cutting technologies and their applications. As a novel fabrication technology, focused ion beam (FIB) direct writing is capable of fabricating the microtools with specific tool profile and nanometric cutting edge. In this chapter, various efforts to fabricate geometrically complex and sharp microtools are described. The fabrication techniques and their performance and applications are discussed. The characteristics of the FIB related to its material processing rates and surface morphologies are introduced. Furthermore, the machining technique and applications using microtools are discussed and their future developments on microtool fabrication by FIB are provided as well.


Material Removal Rate Single Crystal Diamond Diffractive Optical Element White Light Interferometer Ultraprecision Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams DP, Vasileb MJ, Krishnanb ASM (2000) Microgrooving and microthreading tools for fabricating curvilinear features. Precis Eng 24:347–356. doi:10.1016/S0141-6359(00)00045-3CrossRefGoogle Scholar
  2. Adams DP, Vasile MJ, Benavides G (2001) Micromilling of metal alloys with focused ion beam-fabricated tools. Precis Eng 25:107–113. doi:10.1016/S0141-6359(00)00064-7CrossRefGoogle Scholar
  3. Adams DP, Vasile MJ, Mayer TM, Hodges VC (2003) Focused ion beam milling of diamond: effects of H2O on yield, surface morphology, and microstructure. J Vac Sci Technol B 21(6):2334–2343CrossRefGoogle Scholar
  4. Alting L, Kimura F, Hansen HN, Bissacco G (2003) Micro engineering. Ann CIRP Keynote. doi:10.1016/S0007-8506(07)60208-XGoogle Scholar
  5. Bradley RM, Harper James ME (1988) Theory of ripple topography induced by ion bombardment. J Vac Sci Technol A 6(4):2390–2395. doi:10.1116/1.575561CrossRefGoogle Scholar
  6. Carter G (1999) The effects of surface ripples on sputtering erosion rates and secondary ion emission yields. J Appl Phys 85(1):455–459. doi:10.1063/1.369408CrossRefGoogle Scholar
  7. Chouffani K, Überall H (1999) Low energy channeling radiation experiments in a germanium crystal. Phys Stat Sol B 152:479–493Google Scholar
  8. Corbett J, McKeon PA, Peggs GN, Whatmore R (2000) Nanotechnology: international developments and emerging product. Ann CIRP 49:523–546. doi:10.1016/S0007-8506(07)63454-4CrossRefGoogle Scholar
  9. Ding X, Lim GC, Cheng CK, Butler DL, Shaw KC, Liu K et al (2008) Fabrication of a micro-size diamond tool using a focused ion beam. J Micromech Microeng 18:075017. doi:10.1088/0960-1317/18/7/075017CrossRefGoogle Scholar
  10. Ding X, Liu K, Shaw KC, Thoe TB (2009) Ultra-precision cutting of micro-channels on Ni-copper: effects on diamond cutter tool wear and workpiece surface finish. SIMTech Tech Rep 10(4):209–215Google Scholar
  11. Ding X, Jarfors AEW, Lim GC (2012) A study of the cutting performance of poly-crystalline oxygen free copper with single crystalline diamond micro-tools. Precis Eng 36(1):141–152CrossRefGoogle Scholar
  12. Fang FZ, Wu H, Liu XD, Liu YC, Ng ST (2003) Tool geometry study in micromachining. J Micromech Microeng 13:726–731. doi:10.1088/0960-1317/13/5/327CrossRefGoogle Scholar
  13. Fang FZ, Xu ZW, Hu XT, Wang CT, Luo XJ, Fu YQ (2010) Nano-photomask fabrication using focused ion beam direct writing. CIRP Ann Manuf Technol 59:543–546. doi:10.1016/j.cirp.2010.03.038CrossRefGoogle Scholar
  14. Fu YQ, Liu Y, Zhou XL, Xu ZW, Fang FZ (2010) Experimental investigation of superfocusing of plasmonic lens with chirped circular nanoslits. Opt Express 18:3438–3443. doi:10.1364/OE.18.003438CrossRefGoogle Scholar
  15. Harriott LR (1995) Focused-ion-beam-induced gas etching. Jpn J Appl Phys Part 1 33:7094–7098. doi:10.1143/JJAP.33.7094CrossRefGoogle Scholar
  16. Herzig HP (1997) Micro-optics: elements, systems and applications. Taylor & Francis, LondonGoogle Scholar
  17. Ikawa N, Shimada S, Tanaka H (1992) Minimum thickness of cut in micromachining. Nanotechnology 3:6–9. doi:10.1088/0957-4484/3/1/002CrossRefGoogle Scholar
  18. Kempshall BW, Schwarz SM, Prenitzer BI, Giannuzzi LA, Irwin RB, Stevie FA (2001) Ion channeling effects on the focused ion beam milling of Cu. J Vac Sci Technol B 19:749–754. doi:10.1116/1.1368670CrossRefGoogle Scholar
  19. Kitahara T, Ishikawa Y, Terada T, Nakajima N, Fuurta K (1996) Development of Micro-lathe. J Mech Eng Lab 50(5):117–123Google Scholar
  20. Lai M, Zhang XD, Fang FZ (2012) Study on critical rake angle in nanometric cutting. Appl Phys A: Mater Sci Process 108(4):809–818. doi:10.1007/s00339-012-6973-8CrossRefGoogle Scholar
  21. Lang W (1999) Reflexions on the future of microsystem. Sens Actuator 72:1–15. doi:10.1016/S0924-4247(98)00205-2CrossRefGoogle Scholar
  22. Madou MJ (1997) Fundamentals of microfabrication. CRC Press, Boca RatonGoogle Scholar
  23. Maruo S, Saeki T (2008) Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix. Opt Express 16:1174–1179. doi:10.1364/OE.16.001174CrossRefGoogle Scholar
  24. Masuzawa T (2000) State of the art of micromachining. Ann CIRP 49:473–488. doi:10.1016/S0007-8506(07)63451-9CrossRefGoogle Scholar
  25. Ohmori H, Katahira K, Uehara Y, Watanabe Y, Lin W (2003) Improvement of mechanical strength of micro tools by controlling surface characteristics. CIRP Ann 52(1):467–470. doi:10.1016/S0007-8506(07)60627-1CrossRefGoogle Scholar
  26. Picard YN, Adams DP, Vasile MJ (2003) Focused ion beam-shaped microtools for ultra-precision machining of cylindrical components. Precis Eng 27(59):69. doi:10.1016/S0141-6359(02)00188-5Google Scholar
  27. Riedl MJ (1995) Diamond-turned diffractive optical elements for the infrared. Proc SPIE 2540:257–269. doi:10.1117/12.219529CrossRefGoogle Scholar
  28. Rubanov S, Suvorova A (2012) Structural characterization of diamond damage induced by Ga+focused ion beam. In: The 15th European Microscopy Congress Manchester Central, UKGoogle Scholar
  29. Russell PE, Stark TJ, Griffis DP, Phillips JR, Jarausch KF (1998) Chemically and geometrically enhanced focused ion beam micromachining. J Vac Sci Technol B16:2494–2498. doi:10.1116/1.590197CrossRefGoogle Scholar
  30. Sergey R, Alexandra S (2011) Ion implantation in diamond using 30 keV Ga + focused ion beam. Diam Relat Mater 20:1160–1164CrossRefGoogle Scholar
  31. Shimada S, Ikawa N, Tanaka H, Ohmori G, Uchikoshi J, Yoshinaga H (1993a) Feasibility study of ultimate accuracy in microcutting using molecular dynamics simulation. CIRP Ann 42:91–94. doi:10.1016/S0007-8506(07)62399-3CrossRefGoogle Scholar
  32. Shimada S, Ikawa N, Tanaka H, Ohmori G, Uchikoshi J (1993b) Molecular dynamics analysis of cutting force and chip formation process in microcutting. J Jpn Soc Precis Eng 59(12):2015–2021CrossRefGoogle Scholar
  33. Shimada S, Ikawa N, Tanaka H, Uchikoshi J (1994) Structure of micromachined surface simulated by molecular dynamics analysis. CIRP Ann 43(1):51–54. doi:10.1016/S0007-8506(07)62162-3CrossRefGoogle Scholar
  34. Stanishevsky A (2001) Patterning of diamond and amorphous carbon films using focused ion beams. Thin Solid Films 398–399:560–565. doi:10.1016/S0040-6090(01)01318-9CrossRefGoogle Scholar
  35. Taniguchi J, Ohno N, Takeda S, Miyamoto I, Komuro M (1998) Focused-ion-beam-assisted etching of diamond in XeF2. J Vac Sci Technol B16:2506–2510. doi:10.1116/1.590199CrossRefGoogle Scholar
  36. Tseng AA (2004) Recent developments in micromilling using focused ion beam technology. J Micromech Microeng 14:15–34. doi:10.1088/0960-1317/14/4/R01CrossRefGoogle Scholar
  37. Vasile MJ, Nassar R, Xie J, Guo H (1990) Microfabrication techniques using focused ion beams and emergent applications. Micron 30:235–244CrossRefGoogle Scholar
  38. Vietzke E, Refke A, Philipps V, Hennes M (1997) Energy distributions and yields of sputtered C2 and C3 clusters. J Nucl Mat 241–243:810–815. doi:10.1016/S0022-3115(96)00611-3CrossRefGoogle Scholar
  39. Weck M, Fischer S, Vos M (1999) Fabrication of micro components using ultra precision machine tools. Nanotechnology 8:145–148CrossRefGoogle Scholar
  40. Weima JA, Fahrner WR, Job R (2001) Experimental investigation of the parameter dependency of the removal rate of the thermochemically polished CVD diamond films. J Solid State Electrochem 5:112–118. doi:10.1007/s100080000118CrossRefGoogle Scholar
  41. Winters HF, Coburn JW (1992) Surface science aspects of etching reactions. Surf Sci Rep 14:161–269. doi:10.1016/0167-5729(92)90009-ZCrossRefGoogle Scholar
  42. Woon KS, Rahman M, Fang FZ, Neo KS, Liu K (2008) Investigations of tool edge radius effect in micromachining: a FEM simulation approach. J Mater Process Technol 195:204–211CrossRefGoogle Scholar
  43. Xu ZW, Fang FZ, Zhang SJ, Zhang XD, Hu XT, Fu YQ, Li L (2010) Fabrication of micro DOE using micro tools shaped with focused ion beam. Opt Express 18:8025–8032CrossRefGoogle Scholar
  44. Yi AY, Li L (2005) Design and fabrication of a microlens array by use of a slow tool servo. Opt Lett 30:1707–1709. doi:10.1364/OL.30.001707CrossRefGoogle Scholar
  45. Yuan ZJ, Zhou M, Dong S (1996) Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultraprecision machining. J Mater Process Technol 62:327–330. doi:10.1016/S0924-0136(96)02429-6CrossRefGoogle Scholar
  46. Zaitsev AM, Kosaca G, Richarz B et al (1998) Thermochemical polishing of CVD diamond films. Diamond Relat Mater 7:1108–1117. doi:10.1016/S0925-9635(98)00158-7CrossRefGoogle Scholar
  47. Zhang SJ (2009) Study on micro-tools fabrication by focused ion beam technology and key techniques [Doctor Thesis]. Tianjin University, Tianjin, China (In Chinese)Google Scholar
  48. Zhang SJ, Fang FZ, Xu ZW, Hu XT (2009) Controlled morphology of microtools shaped using focused ion beam milling technique. J Vac Sci Technol B 27(3):1304–1309. doi:10.1116/1.3054294CrossRefGoogle Scholar
  49. Zong WJ, Li D, Sun T et al (2007a) The ultimate sharpness of single-crystal diamond cutting tools, Part II: a novel efficient lapping process. Int J Mach Tool Manuf 47:852–863CrossRefGoogle Scholar
  50. Zong WJ, Cheng K, Li D, Sun T, Liang YC (2007b) The ultimate sharpness of single crystal diamond cutting tools-Part Ι. Theoretical analyses and predictions. Int J Mach Tool Manuf 47(5):852–863CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.College of Precision Instrument and Opto-electronics Engineering, Centre of MicroNano Manufacturing TechnologyTianjin UniversityNankai DistrictChina
  2. 2.The State Key Laboratory of Precision Measuring Technology & Instruments, Centre of MicroNano Manufacturing TechnologyTianjin UniversityTianjinChina

Personalised recommendations